【題目】有下面的判斷:

①若△ABC中,a2+b2≠c2,則△ABC不是直角三角形;

②△ABC是直角三角形,∠C=90°,則a2+b2=c2;

③若△ABC中,a2-b2=c2,則△ABC是直角三角形;

④若△ABC是直角三角形,則(a+b)(a-b)=c2.

其中判斷正確的有(  )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

【答案】C

【解析】

根據(jù)勾股定理及其逆定理依次判斷即可解答.

①c不一定是斜邊,錯(cuò)誤;

根據(jù)勾股定理可得②正確;

③根據(jù)勾股定理的逆定理可得正確;

④若△ABC是直角三角形,c是斜邊,則(a+b)(a-b)=c2,④正確.

2個(gè)正確.

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.如圖,矩形ABCD中,OAC中點(diǎn),過點(diǎn)O的直線分別與AB、CD交于點(diǎn)E、F,連結(jié)BFAC于點(diǎn)M,連結(jié)DE、BO.若∠COB=60°FO=FC,則下列結(jié)論:①FB垂直平分OC②△EOB≌△CMB;③DE=EF④SAOESBCM=23.其中正確結(jié)論的個(gè)數(shù)是( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A是雙曲線在第三象限分支上的一個(gè)動(dòng)點(diǎn),連結(jié)AO并延長交另一分支于點(diǎn)B,以AB為邊作等邊三角形ABC,點(diǎn)C在第四象限內(nèi),且隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也在不斷變化,但點(diǎn)C始終在雙曲線上運(yùn)動(dòng),則k的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線a,b,c,d,e,且∠1=2,3=4,則ac平行嗎?為什么?

解:ac平行;

理由:因?yàn)椤?/span>1=2____

所以a//b_______________

因?yàn)椤?/span>3=4 ________

所以b//c_____________

所以a//c_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)P(a,a﹣2)在第四象限,則a的取值范圍是(
A.﹣2<a<0
B.0<a<2
C.a>2
D.a<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列表格中的對應(yīng)值,判斷方程ax2+bx+c=0a≠0,a,b,c為常數(shù))的根的個(gè)數(shù)是

x

6.17

6.18

6.19

6.20

y=ax2+bx+c

0.02

0.01

0.02

0.04

A.0B.1C.2D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△AOB中,∠AOB為直角,OA=6,OB=8,半徑為2的動(dòng)圓圓心Q從點(diǎn)O出發(fā),沿著OA方向以1個(gè)單位長度/秒的速度勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿著AB方向也以1個(gè)單位長度/秒的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0t≤5)以P為圓心,PA長為半徑的⊙PAB、OA的另一個(gè)交點(diǎn)分別為C、D,連結(jié)CDQC

1)當(dāng)t為何值時(shí),點(diǎn)Q與點(diǎn)D重合?

2)當(dāng)⊙Q經(jīng)過點(diǎn)A時(shí),求⊙POB截得的弦長.

3)若⊙P與線段QC只有一個(gè)公共點(diǎn),求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線①y=2x2;②y=2(x+1)2﹣5;③y=3(x+1)2;④y=(x+1)2﹣5.其中, 形狀相同的是(

A. ①② B. ②③④ C. ②④ D. ①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣8x+m2+n的圖象的頂點(diǎn)坐標(biāo)是(5,﹣4),那么一次函數(shù)ymx+n的圖象經(jīng)過第_____象限.

查看答案和解析>>

同步練習(xí)冊答案