【題目】一個正方體的六個面分別標有字母A,B,C,D,E,F,從三個不同方向看到的情形如圖.
(1)A對面的字母是 ,B對面的字母是 ;(請直接填寫答案)
(2)已知A=x,B=﹣x2+3x,C=﹣3,D=1,E=x2019,F=6.
①若字母A表示的數(shù)與它對面的字母表示的數(shù)互為相反數(shù),求E的值;
②若2A﹣3B+M=0,求出M的表達式.
【答案】(1)D,E;(2)①E=﹣1;②M=﹣3x2+7x.
【解析】
(1)根據(jù)正方體各個面上的字母分布特點,即可求得答案,
(2)①由(1)題可知,字母A表示的數(shù)與它對面的字母D表示的數(shù)互為相反數(shù),即可得到答案,
②把A=x,B=﹣x2+3x,代入2A﹣3B+M=0,即可得到M的表達式.
(1)由圖可得,A與B、C、E、F都相鄰,故A對面的字母是D;
E與A、C、D、F都相鄰,故B對面的字母是E;
故答案為:D,E;
(2)①∵字母A表示的數(shù)與它對面的字母D表示的數(shù)互為相反數(shù),
∴x=﹣1,
∴E=(﹣1)2019=﹣1;
②∵2A﹣3B+M=0,
∴2x﹣3(﹣x2+3x)+M=0,
∴M=﹣2x+3(﹣x2+3x)=﹣3x2+7x.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定:一組鄰邊相等且對角互補的四邊形叫作“完美四邊形”.
(1)在①平行四邊形,②菱形,③矩形,④正方形中,一定為“完美”四邊形的是 (請?zhí)钚蛱枺?/span>
(2)在“完美”四邊形ABCD中,AB=AD,∠B+∠D=180°,連接AC.
①如圖1,求證:AC平分∠BCD;
小明通過觀察、實驗,提出以下兩種想法,證明AC平分∠BCD:
想法一:通過∠B+∠D=180°,可延長CB到E,使BE=CD,通過證明△AEB≌△ACD,從而可證AC平分∠BCD;
想法二:通過AB=AD,可將△ACD繞點A順時針旋轉(zhuǎn),使AD與AB重合,得到△AEB,可證C,B,E三點在條直線上,從而可證AC平分∠BCD.
請你參考上面的想法,幫助小明證明AC平分∠BCD;
②如圖2,當∠BAD=90°,用等式表示線段AC,BC,CD之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(3,m),B(﹣2,﹣3)是直線AB和某反比例函數(shù)的圖象的兩個交點.
(1)求直線AB和反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出當x滿足什么范圍時,直線AB在雙曲線的下方;
(3)反比例函數(shù)的圖象上是否存在點C,使得△OBC的面積等于△OAB的面積?如果不存在,說明理由;如果存在,求出滿足條件的所有點C的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=8,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處,當△CEB′為直角三角形時,BE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進價分別是多少元?
(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進貨方案,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前,我市城市居民用電收費方式有以下兩種:
普通電價付費方式:全天0. 52元/度;
峰谷電價付費方式:峰時(早8:00~晚21:00)0. 65元/度;谷時(晚21:00~早8:00)0. 40元/度.
(1)小麗老師家10月份總用電量為280度.
①若其中峰時電量為80度,則小麗老師家按照哪種方式付電費比較合適?能省多少元?
②若小麗老師交費137元,那么,小麗老師家峰時電量為多少度?
(2)到11月份付費時,小麗老師發(fā)現(xiàn)11月份總用電量為320度,用峰谷電價付費方式比普通電價付費方式省了18. 4元,那么,11月份小麗老師家峰時電量為多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABD中,∠ABD=90°,AB=1,sin∠ADB=,點E為AD的中點,線段BA繞點B順時針旋轉(zhuǎn)到BC(旋轉(zhuǎn)角小于180°),使BC∥AD.連接DC,BE.
(1)則四邊形BCDE是________,并證明你的結(jié)論;
(2)求線段AB旋轉(zhuǎn)過程中掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y= 與一次函數(shù)y=x+b的圖形在第一象限相交于點A(1,﹣k+4).
(1)試確定這兩函數(shù)的表達式;
(2)求出這兩個函數(shù)圖象的另一個交點B的坐標,并求△AOB的面積;
(3)根據(jù)圖象直接寫出反比例函數(shù)值大于一次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年某月的月歷上圈出了相鄰的三個數(shù)a、b、c,并求出了它們的和為39,這三個數(shù)在月歷中的排布不可能是( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com