【題目】春節(jié)期間,某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,已知購(gòu)進(jìn)甲商品2件和乙商品3件共需270元;購(gòu)進(jìn)甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?
(2)商場(chǎng)決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場(chǎng)需求,需購(gòu)進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請(qǐng)你求出獲利最大的進(jìn)貨方案,并求出最大利潤(rùn).
【答案】(1)甲、乙兩種商品每件的進(jìn)價(jià)分別是30元、70元;(2)獲利最大的進(jìn)貨方案是購(gòu)買(mǎi)甲種商品80件,乙種商品20件,最大利潤(rùn)是1200元
【解析】(1)設(shè)甲種商品每件的進(jìn)價(jià)為x元,乙種商品每件的進(jìn)價(jià)為y元,根據(jù)“購(gòu)進(jìn)甲商品2件和乙商品3件共需270元;購(gòu)進(jìn)甲商品3件和乙商品2件共需230元”可列出關(guān)于x、y的二元一次方程組,解方程組即可得出兩種商品的單價(jià);
(2)設(shè)該商場(chǎng)購(gòu)進(jìn)甲種商品m件,則購(gòu)進(jìn)乙種商品件,根據(jù)“甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍”可列出關(guān)于m的一元一次不等式,解不等式可得出m的取值范圍,再設(shè)賣(mài)完甲、乙兩種商品商場(chǎng)的利潤(rùn)為w,根據(jù)“總利潤(rùn)=甲商品單個(gè)利潤(rùn)×數(shù)量+乙商品單個(gè)利潤(rùn)×數(shù)量”即可得出w關(guān)于m的一次函數(shù)關(guān)系上,根據(jù)一次函數(shù)的性質(zhì)結(jié)合m的取值范圍即可解決最值問(wèn)題.
解:(1)設(shè)甲種商品每件的進(jìn)價(jià)為x元,乙種商品每件的進(jìn)價(jià)為y元,
依題意得: ,解得: ,
答:甲種商品每件的進(jìn)價(jià)為30元,乙種商品每件的進(jìn)價(jià)為70元.
(2)設(shè)該商場(chǎng)購(gòu)進(jìn)甲種商品m件,則購(gòu)進(jìn)乙種商品件,
由已知得:m≥4,
解得:m≥80.
設(shè)賣(mài)完甲、乙兩種商品商場(chǎng)的利潤(rùn)為w,
則w=(40﹣30)m+(90﹣70)=﹣10m+2000,
∴當(dāng)m=80時(shí),w取最大值,最大利潤(rùn)為1200元.
故該商場(chǎng)獲利最大的進(jìn)貨方案為甲商品購(gòu)進(jìn)80件、乙商品購(gòu)進(jìn)20件,最大利潤(rùn)為1200元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)為A(1,2),B(2,3),C(4,1).
(1)在圖中作出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1,其中點(diǎn)A1的坐標(biāo)為 ;
(2)將△A1B1C1向下平移4個(gè)單位得到△A2B2C2,請(qǐng)畫(huà)出△A2B2C2,其中點(diǎn)B2的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中任意一點(diǎn)P(x0,y0)經(jīng)平移后對(duì)應(yīng)點(diǎn)為P′(x0+3,y0+4),將△ABC作同樣的平移得到△DEF,其中點(diǎn)A與點(diǎn)D,點(diǎn)B與點(diǎn)E,點(diǎn)C與點(diǎn)F分別對(duì)應(yīng),請(qǐng)解答下列問(wèn)題:
(1)直接寫(xiě)出點(diǎn)D、E、F的坐標(biāo);
(2)畫(huà)出,若,,,___________,______.
(3)若將線段沿某個(gè)方向進(jìn)行平移得到線段MN,點(diǎn) B(-1,-2)的對(duì)應(yīng)點(diǎn)為 M ( m,0),則點(diǎn) C(0,1)的對(duì)應(yīng)點(diǎn) N 的坐標(biāo)為________.(用含 m的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣4x﹣m2=0
(1)求證:該方程有兩個(gè)不等的實(shí)根;
(2)若該方程的兩個(gè)實(shí)數(shù)根x1、x2滿足x1+2x2=9,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,已知AB=AC,∠A=36°,AB的垂直平分線MN交AC于D.在下列結(jié)論中:①∠C=72°;②BD是∠ABC的平分線;③∠BDC=100°;④△ABD是等腰三角形;⑤AD=BD=BC.正確的有____.(填寫(xiě)序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是一個(gè)長(zhǎng)為2m、寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀均分成四塊小長(zhǎng)方形,然后按圖2的形狀拼成一下正方形.
(1)請(qǐng)你用兩種不同的方法求圖2中陰影部分的面積?
① ②
(2)觀察圖2,寫(xiě)出三個(gè)代數(shù)式(m+n)2,(m﹣n)2,4mn之間的等量關(guān)系:
(3)根據(jù)(2)中的等量關(guān)系,解決如下問(wèn)題:若|a+b﹣7|+|ab﹣6|=0,求(a﹣b)2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△BDE都是等邊三角形,A、B、D三點(diǎn)共線.下列結(jié)論:①AE=CD;②BF=BG;③△BFG是等邊三角形;④∠AHC=60°.其中正確的有__________(只填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,當(dāng)x>0時(shí),y隨x的增大而增大的是( )
A.y=﹣2x+1
B.y=﹣x2﹣1
C.y=(x+1)2﹣1
D.y=
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com