【題目】如圖,已知直線l1l2l3l4,相鄰兩條平行直線間的距離都是1.如果正方形ABCD的四個(gè)頂點(diǎn)分別在四條直線上,那么sinα=_.

【答案】

【解析】過(guò)DEF⊥l1,交l1E,交l4F,

∵EF⊥l1,l1∥l2∥l3∥l4,

∴EFl2,l3,l4的夾角都是90°,

EFl2,l3,l4都垂直,

∴DE=1,DF=2.

∵四邊形ABCD是正方形,

∴∠ADC=90°,AD=CD,

∴∠ADE+∠CDF=90°,

又∵∠α+∠ADE=90°,

∴∠α=∠CDF,

∵AD=CD,∠AED=∠DFC=90°,

∴△ADE≌△DCF,

∴DE=CF=1,

∴在RtCDF中,CD=,

sinα=sinCDF=

故答案為: .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是正△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;點(diǎn)OO′的距離為4;③∠AOB=150°;④S四邊形AOBO′=6+4;⑤SAOC+SAOB=6+,其中正確的結(jié)論是( 。

A. ①②③⑤ B. ①②③④ C. ①②④⑤ D. ①②③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一種實(shí)驗(yàn)用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時(shí)間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時(shí)間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測(cè)速儀測(cè)得彈珠1分鐘末的速度為2米/分,求:

(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.

(2)彈珠在軌道上行駛的最大速度.

(3)求彈珠離開軌道時(shí)的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,點(diǎn)A、B、C的坐標(biāo)分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo)是(1,2),則點(diǎn)A1,C1的坐標(biāo)分別是 ( 。

A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1)

C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(10,0),B(4,8),C(0,8),連接AB,BC,點(diǎn)Px軸上,從原點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),同時(shí)點(diǎn)M從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿折線A﹣B﹣C向點(diǎn)C運(yùn)動(dòng),其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)P,M兩點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒.

(1)求AB長(zhǎng);

(2)設(shè)PAM的面積為S,當(dāng)0≤t≤5時(shí),求St的函數(shù)關(guān)系式,并指出S取最大值時(shí),點(diǎn)P的位置;

(3)t為何值時(shí),APM為直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是矩形ABCD的對(duì)角線AC上一點(diǎn),過(guò)點(diǎn)PEFBC,分別交AB,CD于點(diǎn)E,F,連接PB,PD.AE2,PF8.則圖中陰影部分的面積為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為半圓O的直徑,C為BA延長(zhǎng)線上一點(diǎn),CD切半圓O于點(diǎn)D。連結(jié)OD,作BE⊥CD于點(diǎn)E,交半圓O于點(diǎn)F。已知CE=12,BE=9,

(1)求證:△COD∽△CBE;

(2)求半圓O的半徑的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在第1個(gè)ABA1,B=40°,BAA1=∠BA1A,A1B上取一點(diǎn)C,延長(zhǎng)AA1A2,使得在第2個(gè)A1CA2,A1CA2=∠A1 A2CA2C上取一點(diǎn)D,延長(zhǎng)A1A2A3使得在第3個(gè)A2DA3,A2DA3=∠A2 A3D;按此做法進(jìn)行下去,3個(gè)三角形中以A3為頂點(diǎn)的內(nèi)角的度數(shù)為 n個(gè)三角形中以An為頂點(diǎn)的內(nèi)角的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為2,其面積標(biāo)記為S1,以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標(biāo)記為S2,……按照此規(guī)律繼續(xù)下去,則S2019的值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案