精英家教網 > 初中數學 > 題目詳情

【題目】如圖,直線AB,CD相交于點O,過點O作兩條射線OM,ON,且∠AOM=∠CON=90°.

(1)若OC平分∠AOM,求∠AOD的度數;

(2)若∠1=∠BOC,求∠AOC和∠MOD.

【答案】(1)135°(2)150°

【解析】

①根據角平分線定義求出∠1=∠AOC=45°,代入∠AOD=180°-∠AOC求出即可;
②求出∠BOM=180°-90°=90°,根據∠1=∠BOC求出∠1=∠BOM=30°,即可求出答案.

(1)因為∠AOM=∠CON=90°,OC平分∠AOM,所以∠1=∠AOC=45°,所以∠AOD=180°-∠AOC=180°-45°=135°.

(2)因為∠AOM=90°,所以∠BOM=180°-90°=90°.因為∠1=∠BOC,所以∠1=∠BOM=30°,所以∠AOC=90°-30°=60°,∠MOD=180°-30°=150°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】閱讀材料并解答下列問題.

你知道嗎?一些代數恒等式可以用平面圖形的面積來表示,例如(2ab)(ab)2a23abb2就可以用圖甲中的①或②的面積表示.

(1)請寫出圖乙所表示的代數恒等式;

(2)畫出一個幾何圖形,使它的面積能表示(ab)(a3b)a24ab3b2;

(3)請仿照上述式子另寫一個含有ab的代數恒等式,并畫出與之對應的幾何圖形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖一次函數 與反比例函數 交于 、 ,與 軸, 軸分別交于點

(1)直接寫出一次函數 的表達式和反比例函數 的表達式;
(2)求證:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內接四邊形,∠B=135°,則∠AOC的度數為(
A.45°
B.90°
C.100°
D.135°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算下列各題
(1)化簡:( ﹣1)÷
(2)關于x的一元二次方程kx2+2x﹣3=0有兩個不相等的實數根,求k的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將ABC沿BC邊上的中線AD平移到A'B'C'的位置,已知ABC的面積為9,陰影部分三角形的面積為4.若AA'=1,則A'D等于( 。

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC為等邊三角形,P為BC上一點,△APQ為等邊三角形,PQ與AC相交于點M,則下列結論中正確的是( ) ①AB∥CQ;②∠ACQ=60°;③AP2=AMAC;④若BP=PC,則PQ⊥AC.

A.①②
B.①③
C.①②③
D.①②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,ADBC,垂足為D,點EAB上,EFBC,垂足為F

(1)ADEF平行嗎?為什么?

(2)如果∠1=∠2,且∠3115°,求∠BAC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】探究題:如圖,在等腰三角形ABC中,AB=AC,其底邊長為8 cm,腰長為5 cm,一動點P在底邊上從點B出發(fā)向點C以0.25 cm/s的速度移動,請你探究:當點P運動多長時間時,點P與頂點A的連線PA與腰垂直.

查看答案和解析>>

同步練習冊答案