【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AC=4,BC=3,則tan∠ACD的值為(

A.
B.
C.
D.

【答案】A
【解析】解:∵在Rt△ABC中,∠ACB=90°,CD⊥AB于D,
∴∠CDA=90°,∠A+∠B=90°,
∴∠A+∠ACD=90°,
∴∠B=∠ACD,
∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,tanB= ,
∴tanB= ,
∴tan∠ACD=
故選A.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用解直角三角形的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】水利部確定每年的322日至28日為中國(guó)水周1994年以前為71日至7日),從1991年起,我國(guó)還將每年5月的第二周作為城市節(jié)約用水宣傳周.某社區(qū)為了進(jìn)一步提高居民珍惜水、保護(hù)水和水憂患意識(shí),提倡節(jié)約用水,從本社區(qū)5000戶家庭中隨機(jī)抽取100戶,調(diào)查他們家庭每月的平均用水量,并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計(jì)圖表:

請(qǐng)根據(jù)上面的統(tǒng)計(jì)圖表,解答下列問(wèn)題:

1)在頻數(shù)分布表中:m= ,n=

2)根據(jù)題中數(shù)據(jù)補(bǔ)全頻數(shù)直方圖;

3)如果自來(lái)水公司將基本月用水量定為每戶每月12噸,不超過(guò)基本月用水量的部分享受基本價(jià)格,超出基本月用水量的部分實(shí)行加價(jià)收費(fèi),那么該社區(qū)用戶中約有多少戶家庭能夠全部享受基本價(jià)格?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長(zhǎng)BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標(biāo)系(如圖1),y軸是拋物線的對(duì)稱軸,頂點(diǎn)E到坐標(biāo)原點(diǎn)O的距離為6m.

(1)求拋物線的解析式;
(2)現(xiàn)有一輛貨運(yùn)卡車,高4.4m,寬2.4m,它能通過(guò)該隧道嗎?
(3)如果該隧道內(nèi)設(shè)雙向道(如圖2),為了安全起見,在隧道正中間設(shè)有0.4m的隔離帶,則該輛貨運(yùn)卡車還能通過(guò)隧道嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD中,AB=4,E是BC上一點(diǎn),將△CDE沿直線DE折疊后,點(diǎn)C落在點(diǎn)C′處,連接C′E交AD于點(diǎn)F,若BE=2,F(xiàn)為AD的中點(diǎn),則AD的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年深圳國(guó)際馬拉松賽于12月7日拉開帷幕,某馬拉松愛(ài)好者用無(wú)人機(jī)拍攝比賽過(guò)程.如圖,在無(wú)人機(jī)的鏡頭C下,觀測(cè)深南大道A處的俯角為30°,B處的俯角為45°.如果此時(shí)無(wú)人機(jī)鏡頭C處離路面的高度CD為100米,點(diǎn)A、D、B在同一直線上,求A、B兩處之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,則PD的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,折疊長(zhǎng)方形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知AB=8cmBC=10cm,求EF的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某中學(xué)有一塊四邊形的空地ABCD,學(xué)校計(jì)劃在空地上種植草皮,經(jīng)測(cè)量∠A=90°,AB=3m,BC=12m,CD=13mDA=4m,若每平方米草皮需要200元,問(wèn)學(xué)校需要投入多少資金買草皮?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中, 厘米, 厘米,點(diǎn)DAB的中點(diǎn).如果點(diǎn)P在線段BC上以4厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為_______ 厘米/秒時(shí),能夠在某一時(shí)刻使BPDCQP全等.

查看答案和解析>>

同步練習(xí)冊(cè)答案