【題目】如圖所示,折疊長方形ABCD的一邊AD,使點D落在BC邊的點F處,已知AB=8cm,BC=10cm,求EF的長。

【答案】5cm.

【解析】試題分析

設(shè)CE= ,則可得DE= ,由折疊的性質(zhì)易得:AF=AD=BC=10,EF=DE= ,在RtABF中由勾股定理可得BF=6,從而可得FC=4,在RtEFC中由勾股定理建立方程,解方程即可求得得到CE的值.

試題解析

四邊形ABCD為矩形,

∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,

折疊矩形的一邊AD,使點D落在BC邊的點F,

∴AF=AD=10DE=EF,

RtABFBF==6,

∴FC=BC﹣BF=4,

設(shè)EC=x,DE=8﹣x,EF=8﹣x

Rt△EFC,

∵EC2+FC2=EF2,

∴x2+42=8﹣x2,解得x=3

∴EC的長為3cm

點睛;在這類有關(guān)矩形的折疊問題中,需注意兩個問題:(1)折疊前后的兩個對應(yīng)圖形是關(guān)于折痕對稱的,要充分利用軸對稱的性質(zhì);(2)把已知量和要求的量集中到一個直角三角形中,利用勾股定理建立方程來解題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣4,0),B(2,0),與y軸交于點C(0,2).

(1)求拋物線的解析式;
(2)若點D為該拋物線上的一個動點,且在直線AC上方,當以A,C,D為頂點的三角形面積最大時,求點D的坐標及此時三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有如下結(jié)論:
①a>0;②b>0;③a+b+c>0;④2a+b=0;⑤方程ax2+bx+c=0的解為x1=﹣1,x2=3.
其中正確的是(

A.①②③
B.②③④
C.③④⑤
D.①④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AC=4,BC=3,則tan∠ACD的值為(

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的文字,解答問題.

大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,但是由于1<<2,所以的整數(shù)部分為1,將減去其整數(shù)部分1,差就是小數(shù)部分-1,根據(jù)以上的內(nèi)容,解答下面的問題:

1的整數(shù)部分是 ,小數(shù)部分是 ;

21+的整數(shù)部分是 ,小數(shù)部分是 ;

3若設(shè)2+整數(shù)部分是x,小數(shù)部分是y,求x-y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標系中,四邊形ABCD是長方形,∠A=∠B=∠C=∠D=90°,AB∥CD,AB=CD=8cm,AD=BC=6cm,D點與原點重合,坐標為(0,0)

(1)寫出點B的坐標;

(2)動點P從點A出發(fā)以每秒3個單位長度的速度向終點B勻速運動,動點Q從點C出發(fā)以每秒4個單位長度的速度沿射線CD方向勻速運動,若P,Q兩點同時出發(fā),設(shè)運動時間為t,當t為何值時,PQ∥BC;

(3)在Q的運行過程中,當Q運動到什么位置時,使△ADQ的面積為9,求此時Q點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】來自中國、美國、立陶宛、加拿大的四國青年男籃巔峰爭霸賽于2014325-27日在我縣體育館舉行。小明來到體育館看球賽,進場時,發(fā)現(xiàn)門票還在家里,此時離比賽開始還有25分鐘,于是立即步行回家取票.同時,他父親從家里出發(fā)騎自行車以他3倍的速度給他送票,兩人在途中相遇,相遇后小明立即坐父親的自行車趕回體育館.如圖中線段AB、OB分別表示父、子倆送票、取票過程中,離體育館的路程S(米)與所用時間t(分鐘)之間的圖象,結(jié)合圖象解答下列問題(假設(shè)騎自行車和步行的速度始終保持不變):

(1)從圖中可知,小明家離體育館 米,父子倆在出發(fā)后 分鐘相遇.

(2)求出父親與小明相遇時距離體育館還有多遠?

(3)小明能否在比賽開始之前趕回體育館?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,∠ACB=45°,∠D=30°,B、C、D在同一直線上,連接AD,若AB= ,則sin∠CAD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD為∠CAF的角平分線,BD=CD,∠DBC=∠DCB,∠DCA=∠ABD,過DDE⊥ACE,DF⊥ABBA的延長線于F,則下列結(jié)論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結(jié)論有( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

同步練習冊答案