【題目】(本題7分)如圖,某校綜合實(shí)踐活動(dòng)小組的同學(xué)欲測(cè)量公園內(nèi)一棵樹DE的高度.他們?cè)谶@棵樹正前方一座樓亭前的臺(tái)階上A點(diǎn)處測(cè)得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺(tái)階下的點(diǎn)C處,測(cè)得樹頂端D的仰角為60°.已知A點(diǎn)的高度AB為2米,臺(tái)階AC的坡度為 (即AB:BC=),且B、C、E三點(diǎn)在同一條盲線上。請(qǐng)根據(jù)以上殺件求出樹DE的高度(測(cè)傾器的高度忽略不計(jì)).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解初中階段女生身高情況,從某中學(xué)初二年級(jí)120名女生中隨意抽出40名同齡女生的身高數(shù)據(jù),經(jīng)過分組整理后的頻數(shù)分布表及頻數(shù)分布直方圖如圖所示:
結(jié)合以上信息,回答問題:
(1)a=______,b=______,c=______.
(2)請(qǐng)你補(bǔ)全頻數(shù)分布直方圖.
(3)試估計(jì)該年級(jí)女同學(xué)中身高在160~165cm的同學(xué)約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,PB與⊙O相切于點(diǎn)B,連接PA交⊙O于點(diǎn)C,連接BC.
(1)求證:∠BAC=∠CBP;
(2)求證:PB2=PCPA;
(3)當(dāng)AC=6,CP=3時(shí),求sin∠PAB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線的頂點(diǎn)為A(1,4),拋物線與y軸交于點(diǎn)B(0,3),與x軸交于C,D兩點(diǎn).點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn).
(1)求此拋物線的解析式;
(2)當(dāng)PA+PB的值最小時(shí),求點(diǎn)P的坐標(biāo);
(3)拋物線上是否存在一點(diǎn)Q(Q與B不重合),使△CDQ的面積等于△BCD的面積?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l:y=x﹣與x軸交于點(diǎn)B1,以O(shè)B1為邊長(zhǎng)作等邊三角形A1OB1,過點(diǎn)A1作A1B2平行于x軸,交直線l于點(diǎn)B2,以A1B2為邊長(zhǎng)作等邊三角形A2A1B2,過點(diǎn)A2作A2B3平行于x軸,交直線l于點(diǎn)B3,以A2B3為邊長(zhǎng)作等邊三角形A3A2B3,…,則點(diǎn)A2017的橫坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,過原點(diǎn)O及點(diǎn)A(8,0),C(0,6)作矩形OABC、連結(jié)OB,點(diǎn)D為OB的中點(diǎn),點(diǎn)E是線段AB上的動(dòng)點(diǎn),連結(jié)DE,作DF⊥DE,交OA于點(diǎn)F,連結(jié)EF.已知點(diǎn)E從A點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在線段AB上移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.
(1)如圖1,當(dāng)t=3時(shí),求DF的長(zhǎng).
(2)如圖2,當(dāng)點(diǎn)E在線段AB上移動(dòng)的過程中,∠DEF的大小是否發(fā)生變化?如果變化,請(qǐng)說明理由;如果不變,請(qǐng)求出tan∠DEF的值.
(3)連結(jié)AD,當(dāng)AD將△DEF分成的兩部分的面積之比為1:2時(shí),求相應(yīng)的t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O 的直徑 AB 垂直弦 CD 于點(diǎn) E,連接 CO 并延長(zhǎng)交 AD于點(diǎn) F,且 CF⊥AD
(1)求證:點(diǎn) E 是 OB 的中點(diǎn);
(2)若 AB=12,求 CD 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊中,是邊上一點(diǎn),連接,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連接,若,,則有以下四個(gè)結(jié)論:①是等邊三角形;②;③的周長(zhǎng)是10;④.其中正確結(jié)論的序號(hào)是( )
A.②③④B.①③④C.①②④D.①②③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com