【題目】某數(shù)學活動小組在做角的拓展圖形練習時,經(jīng)歷了如下過程:

1)操作發(fā)現(xiàn):點為直線上一點,過點作射線,使將一直角三角板的直角頂點放在點處,一邊在射線上,另一邊在直線的下方,如圖:將圖1中的三角板繞點旋轉(zhuǎn),當直角三角板的邊在的內(nèi)部,且恰好平分時,如圖2.則下列結(jié)論正確的是 (填序號即可).

平分的平分線在直線

2)數(shù)學思考:同學們在操作中發(fā)現(xiàn),當三角板繞點旋轉(zhuǎn)時,如果直角三角板的邊在的內(nèi)部且另一邊在直線AB的下方,那么的差不變,請你說明理由;如果直角三角板的、邊都在的內(nèi)部,那么的和不變,請直接寫出的和,不要求說明理由.

3)類比探索:三角板繞點繼續(xù)旋轉(zhuǎn),當直角三角板的邊在的內(nèi)部時,如圖3,求相差多少度?為什么?

【答案】1①②④;2)如果直角三角板的邊在的內(nèi)部且另一邊在直線AB的下方,那么的差不變,理由見解析;如果直角三角板的邊都在的內(nèi)部,那么的和不變,+=30°;③30°.

【解析】

1)利用角平分線的定義結(jié)合直角三角板的內(nèi)角度數(shù)即可分別判斷得出答案;
2)當直角三角板的邊在的內(nèi)部且另一邊在直線AB的下方時根據(jù)∠COM=120°-BOM,∠BON=90°-BOM,可得出結(jié)果;當直角三角板的、邊都在的內(nèi)部時,∠COM+BON=BOC-MON,可得出結(jié)果;
3)因為∠MON=90°,∠AOC=60°,所以∠AOM=90°-AON,∠NOC=60°-AON,然后作差即可.

解:(1)∵平分,,故①正確;

,,,,故正確;

,,不平分,故③錯誤;

,,的平分線在直線上,故④正確;

故答案為:①②④.

2的差不變.理由如下:當直角三角板的邊在的內(nèi)部且另一邊在直線AB的下方時,

∵∠COM=BOC-COM=120°-BOM
BON=MON-BOM=90°-BOM,
∴∠COM-BON=120°-90°=30°;
的和不變,其和為30°.理由如下:當直角三角板的、邊都在的內(nèi)部時,∠COM+BON=BOC-MON=120°-90°=30°.

3)∵,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為了考查學生的綜合素質(zhì),九年級畢業(yè)生統(tǒng)一參加理化生實踐操作科目考試。根據(jù)我市實際情況,市教育局決定:理化生實踐考查科目命制24題,分4個試題單元,每個單元內(nèi)含6道理化生實驗操作題。即:物理3題;化學2題;生物1題。小聰與小明是某實驗中學九年級的同班同學,在三月份舉行的理化生考試中,他們同時抽到同一個試題單元,且每個同學都是同一個試題單元里隨機抽取一題。

(1)小聰抽到物理學科科目可能性有多大?

(2)用列表法或樹狀圖,求他倆同時抽到生物的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖1.正方形ABCD,過點A作∠EAF=90°,兩邊分別交直線BC于點E,交線段CD于點F,GAE中點,連接BG

(1)求證:ABE≌△ADF

(2)如圖2,過點GBG的垂線交對角線AC于點H,求證:GH=GB;

(3)如圖3,連接HF,若CH=3AH,AD=2,求線段HF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在精準扶貧中,李師傅在當?shù)卣姆龀窒拢ツ晗掳肽,他開辦的桌椅加工廠取得了非常好的經(jīng)濟效益,他決定制作一批課桌捐贈給山區(qū)學校:已知制作一張桌子要用一個桌面和4條桌腿,1m3木材可制作20個桌面,或者制作400條桌腿,現(xiàn)有12m3木材,應怎樣計劃用料才能制作盡可能多的桌子?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A在數(shù)軸上對應的數(shù)為a,點B對應的數(shù)為b,且ab滿足|a+3|+b﹣22=0

1)求A、B兩點的對應的數(shù)a、b

2)點C在數(shù)軸上對應的數(shù)為x,且x是方程2x+1=x8的解.

①求線段BC的長;

②在數(shù)軸上是否存在點P,使PA+PB=BC?求出點P對應的數(shù);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如果一個一元一次方程的一次項系數(shù)與常數(shù)項的差剛好是這個方程的解,則稱這個方程為妙解方程.例如:方程中,,方程的解為,則方程為妙解方程.請根據(jù)上述定義解答下列問題:

1)方程是妙解方程嗎?試說明理由.

2)已知關(guān)于的一元一次方程是妙解方程.的值.

3)已知關(guān)于的一元一次方程是妙解方程,并且它的解是.求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,邊長不等的正方形依次排列,每個正方形都有一個頂點落在函數(shù)的圖象上,從左向右第3個正方形中的一個頂點A的坐標為,陰影三角形部分的面積從左向右依次記為、、、,則的值為______用含n的代數(shù)式表示,n為正整數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是甲、乙兩車在某時段速度隨時間變化的圖象,下列結(jié)論錯誤的是( )

A. 乙前4秒行駛的路程為48米 B. 兩車到第3秒時行駛的路程相等

C. 在0到8秒內(nèi)甲的速度每秒增加4米/秒 D. 在4至8秒內(nèi)甲的速度都大于乙的速度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

在學習可化為一元一次方程的分式方程及其解法的過程中,老師提出一個問題:若關(guān)于x的分式方程=1的解為正數(shù),求a的取值范圍.

經(jīng)過獨立思考與分析后,小杰和小哲開始交流解題思路如下:

小杰說:解這個關(guān)于x的分式方程,得x=a+4.由題意可得a+4>0,所以a>﹣4,問題解決.

小哲說:你考慮的不全面,還必須保證x≠4,即a+4≠4才行.

(1)請回答:   的說法是正確的,并簡述正確的理由是   ;

(2)參考對上述問題的討論,解決下面的問題:

若關(guān)于x的方程的解為非負數(shù),求m的取值范圍.

查看答案和解析>>

同步練習冊答案