【題目】如圖在平行四邊形ABCD中,BC=2AB,CE⊥AB于E,F(xiàn)為AD的中點(diǎn),若∠AEF=54,則∠B=( )

A. 54 B. 60 C. 72 D. 66

【答案】C

【解析】分析:過(guò)FAB、CD的平行線(xiàn)FG,由于FAD的中點(diǎn),那么GBC的中點(diǎn),即RtBCE斜邊上的中點(diǎn),由此可得BC=2EG=2FG,即GEF、BEG都是等腰三角形,因此求∠B的度數(shù),只需求得∠BEG的度數(shù)即可;易知四邊形ABGF是平行四邊形,得∠EFG=AEF,由此可求得∠FEG的度數(shù),即可得到∠AEG的度數(shù),根據(jù)鄰補(bǔ)角的定義可得∠BEG的值,由此得解.

詳解:過(guò)FFGABCD,交BCG;

則四邊形ABGF是平行四邊形,所以AF=BG,

GBC的中點(diǎn);

連接EG,在RtBEC中,EG是斜邊上的中線(xiàn),

BG=GE=FG=BC;

AEFG,

∴∠EFG=AEF=FEG=54°,

∴∠AEG=AEF+FEG=108°,

∴∠B=BEG=180°-108°=72°.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電器超市銷(xiāo)售每臺(tái)進(jìn)價(jià)分別為200元、170元的AB兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷(xiāo)售情況:

銷(xiāo)售時(shí)段

銷(xiāo)售數(shù)量

銷(xiāo)售收入

A種型號(hào)

B種型號(hào)

第一周

3臺(tái)

5臺(tái)

1800

第二周

4臺(tái)

10臺(tái)

3100

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷(xiāo)售收入-進(jìn)貨成本)

1)求A、B兩種型號(hào)的電風(fēng)扇的銷(xiāo)售單價(jià);

2)若超市準(zhǔn)備用不多于5400元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共30臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?

3)在(2)的條件下,超市銷(xiāo)售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)為1400元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E是邊CD的中點(diǎn),連接BE并延長(zhǎng),交AD延長(zhǎng)線(xiàn)于點(diǎn)F,連接BD、CF.

(1)求證:△CEB≌△DEF

(2)若AB=BF,試判斷四邊形BCFD的形狀,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一些半徑相同的小圓按如圖所示的規(guī)律擺放:第1個(gè)圖形有6個(gè)小圓,第2個(gè)圖形有10個(gè)小圓,第3個(gè)圖形有16個(gè)小圓,第4個(gè)圖形有24個(gè)小圓,…,依次規(guī)律,第9個(gè)圖形圓的個(gè)數(shù)為(

A.94B.85C.84D.76

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】科幻小說(shuō)《實(shí)驗(yàn)室的故事》中,有這樣一個(gè)情節(jié),科學(xué)家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過(guò)一天后,測(cè)試出這種植物高度的增長(zhǎng)情況(如下表):

溫度 /℃

……

-4

-2

0

2

4

4.5

……

植物每天高度增長(zhǎng)量 /mm

……

41

49

49

41

25

19.75

……

這些數(shù)據(jù)說(shuō)明:植物每天高度增長(zhǎng)量 關(guān)于溫度 的函數(shù)是反比例函數(shù)、一次函數(shù)和二次函數(shù)中的一種.
(1)你認(rèn)為是哪一種函數(shù),并求出它的函數(shù)關(guān)系式;
(2)溫度為多少時(shí),這種植物每天高度增長(zhǎng)量最大?
(3)如果實(shí)驗(yàn)室溫度保持不變,在10天內(nèi)要使該植物高度增長(zhǎng)量的總和超過(guò)250mm,那么實(shí)驗(yàn)室的溫度x應(yīng)該在哪個(gè)范圍內(nèi)選擇?請(qǐng)直接寫(xiě)出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù) 的部分對(duì)應(yīng)值如下表:

-1

0

1

3

-3

1

3

1

則下列判斷中正確的是( )
A.拋物線(xiàn)開(kāi)口向上
B.拋物線(xiàn)與 軸交于負(fù)半軸
C.當(dāng) 時(shí),
D.方程 的正根在3與4之間

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將平行四邊形紙片ABCD按如圖方式折疊,使點(diǎn)CA重合,點(diǎn)D落到D′處,折痕為EF

1)求證:△ABE≌△AD′F;

2)連接CF,判斷四邊形AECF是什么特殊四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(數(shù)學(xué)經(jīng)驗(yàn))三角形的中線(xiàn)的性質(zhì):三角形的中線(xiàn)等分三角形的面積.

(經(jīng)驗(yàn)發(fā)展)面積比和線(xiàn)段比的聯(lián)系:

1)如圖1,MABCAB上一點(diǎn),且BM=2AM.若ABC的面積為a,若CBM的面積為S,則S=_______(用含a的代數(shù)式表示)

(結(jié)論應(yīng)用)(2)如圖2,已知CDE的面積為1,,,求ABC的面積.

(遷移應(yīng)用)(3)如圖3.在ABC中,MAB的三等分點(diǎn)(),NBC的中點(diǎn),若ABC的面積是1,請(qǐng)直接寫(xiě)出四邊形BMDN的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】市場(chǎng)上甲種商品的采購(gòu)價(jià)為60元/件,乙種商品的采購(gòu)價(jià)為100元/件,某商店需要采購(gòu)甲、乙兩種商品共15件,且乙種商品的件數(shù)不少于甲種商品件數(shù)的2倍.設(shè)購(gòu)買(mǎi)甲種商品件(>0),購(gòu)買(mǎi)兩種商品共花費(fèi)元.

(1)求出的函數(shù)關(guān)系式(寫(xiě)出自變量的取值范圍);

(2)試?yán)煤瘮?shù)的性質(zhì)說(shuō)明,當(dāng)采購(gòu)多少件甲種商品時(shí),所需要的費(fèi)用最少?

查看答案和解析>>

同步練習(xí)冊(cè)答案