【題目】市場(chǎng)上甲種商品的采購(gòu)價(jià)為60元/件,乙種商品的采購(gòu)價(jià)為100元/件,某商店需要采購(gòu)甲、乙兩種商品共15件,且乙種商品的件數(shù)不少于甲種商品件數(shù)的2倍.設(shè)購(gòu)買甲種商品件(>0),購(gòu)買兩種商品共花費(fèi)元.

(1)求出的函數(shù)關(guān)系式(寫出自變量的取值范圍);

(2)試?yán)煤瘮?shù)的性質(zhì)說明,當(dāng)采購(gòu)多少件甲種商品時(shí),所需要的費(fèi)用最少?

【答案】(1)(2)當(dāng)x=5時(shí),最少費(fèi)用為1300元

【解析】

根據(jù)甲、乙兩種商品共15件,購(gòu)買甲種商品有x件,則乙商品則有(15-x)件,根據(jù)乙種商品的件數(shù)不少于甲種商品件數(shù)的2倍,列出不等式組,求出x的取值范圍,再根據(jù)甲、乙兩種商品的價(jià)格列出一次函數(shù)關(guān)系式即可;
2)根據(jù)(1)得出一次函數(shù)yx的增大而減少,再根據(jù)x的取值范圍,即可得出當(dāng)x=5時(shí),所需要的費(fèi)用最少.

1y=60x+10015-x=-40x+1500,

0x5
即y=-40x+15000x5);
2)∵k=-400,
yx的增大而減。串(dāng)x取最大值5時(shí),y最。
此時(shí)y=-40×5+1500=1300,
∴當(dāng)采購(gòu)5件甲種商品時(shí),所需要的費(fèi)用最少.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平行四邊形ABCD中,BC=2AB,CE⊥AB于E,F(xiàn)為AD的中點(diǎn),若∠AEF=54,則∠B=( )

A. 54 B. 60 C. 72 D. 66

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1=∠2,要使ABDACD,需從下列條件中增加一個(gè),錯(cuò)誤的選法是(

A.ADB=∠ADCB.B=∠CC.ABACD.DBDC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列推理過程,在括號(hào)中填寫理由. 已知:如圖,點(diǎn)D,E分別在線段AB、BC上,ACDE,DFAEBC于點(diǎn)F,AE平分∠BAC.求證:DF平分∠BDE

證明:∵AE平分∠BAC(已知)

∴∠1=2(________

ACDE(已知

∴∠1=3(________

故∠2=3(________

DFAE(已知

∴∠2=5(________

∴∠3=4(________

DE平分∠BDE(________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,小明在自家樓頂上的點(diǎn)A處測(cè)量建在與小明家樓房同一水平線上鄰居的電梯的高度,測(cè)得電梯樓頂部B處的仰角為45°,底部C處的俯角為26°,已知小明家樓房的高度AD=15米,求電梯樓的高度BC(結(jié)果精確到0.1米)(參考數(shù)據(jù):sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l1與坐標(biāo)軸交于A,B兩點(diǎn),直線l2≠0)與坐標(biāo)軸交于點(diǎn)C,D.

(1)求點(diǎn)A,B的坐標(biāo);

(2)如圖,當(dāng)=2時(shí),直線l1,l2與相交于點(diǎn)E,求兩條直線與軸圍成的△BDE的面積;

(3)若直線l1,l2軸不能圍成三角形,點(diǎn)P(a,b)在直線l2(k≠0)上,且點(diǎn)P在第一象限.

①求的值;

②若,,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角中,,點(diǎn) 內(nèi)一點(diǎn),連接, ,連接、交于點(diǎn).

1)如圖 1,求的度數(shù);

2)如圖 2,連接于點(diǎn),連接,若平分,求證:

3)如圖 3,在(2)的條件下,、分別于點(diǎn),,連接,若的面積與的面積差為 6,,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)點(diǎn)到圓的最小距離為,最大距離為,則該圓的半徑是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADBC,∠EAD=∠C

1)試判斷AECD的位置關(guān)系,并說明理由;

2)若∠FEC=∠BAE,∠EFC50°,求∠B的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案