【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸是x=-1,且過點(diǎn)(-3,0),說法:① abc<0;② 2a-b=0;③ 4a-2b+c<0;④ 若(-5,y1)、(,y2)是拋物線上兩點(diǎn),則y1>y2,其中說法正確的有( )個
A. 1B. 2C. 3D. 4
【答案】D
【解析】
根據(jù)拋物線開口方向得到a>0,根據(jù)拋物線的對稱軸得b=2a>0,則2a-b=0,則可對②進(jìn)行判斷;根據(jù)拋物線與y軸的交點(diǎn)在x軸下方得到c<0,則abc<0,于是可對①進(jìn)行判斷;由于x=-2時,y<0,則得到4a-2b+c<0,則可對③進(jìn)行判斷;通過點(diǎn)(-5,y1)和點(diǎn)(1,y2)離對稱軸要遠(yuǎn)近對④進(jìn)行判斷.
∵拋物線開口向上,
∴a>0,
∵拋物線對稱軸為直線x= =1,
∴b=2a>0,則2ab=0,所以②正確;
∵拋物線與y軸的交點(diǎn)在x軸下方,
∴c<0,
∴abc<0,所以①正確;
∵x=2時,y<0,
∴4a2b+c<0,所以③正確;
∵點(diǎn)(5,y1)離對稱軸要比點(diǎn)(1, y2)離對稱軸要遠(yuǎn),
∴y1>y2,所以④正確.
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,PA、PB是⊙O的切線,切點(diǎn)分別為A、B,AC是⊙O的直徑.
(1)如圖1,若∠BAC=25°,求∠P的度數(shù);
(2)如圖2,延長PB、AC相交于點(diǎn)D.若AP=AC,求cosD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,M為等腰三角形ABD的底邊AB的中點(diǎn),過D作DC∥AB,連接BC,AB=6cm,DM=3cm,DC=3-cm.動點(diǎn)P自A點(diǎn)出發(fā),在AB上勻速運(yùn)動,動點(diǎn)Q自點(diǎn)B出發(fā),在折線BC-CD上勻速運(yùn)動,速度均為1cm/s,兩點(diǎn)同時出發(fā),當(dāng)其中一個動點(diǎn)到達(dá)終點(diǎn)時,它們同時停止運(yùn)動,設(shè)點(diǎn)P運(yùn)動t(s)時,△MPQ的面積為S.
(1)當(dāng)點(diǎn)P在線段AM上運(yùn)動時,PM=_______.(用t的代數(shù)式表示)
(2)求BC的長度;
(3)當(dāng)點(diǎn)P在MB上運(yùn)動時,求S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某足球運(yùn)動員站在點(diǎn)O處練習(xí)射門,將足球從離地面0.5m的A處正對球門踢出(點(diǎn)A在y軸上),足球的飛行高度y(單位:m)與飛行時間t(單位:s)之間滿足函數(shù)關(guān)系y=at2+5t+c,已知足球飛行0.8s時,離地面的高度為3.5m.
(1)足球飛行的時間是多少時,足球離地面最高?最大高度是多少?
(2)若足球飛行的水平距離x(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關(guān)系x=10t,已知球門的高度為2.44m,如果該運(yùn)動員正對球門射門時,離球門的水平距離為28m,他能否將球直接射入球門?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】區(qū)教育局為了解本區(qū)八年級學(xué)生參加社會實踐活動情況,隨機(jī)抽查了區(qū)內(nèi)部分八年級學(xué)生第一學(xué)期參加社會實踐活動的天數(shù),并用得到的數(shù)據(jù)檢測了兩幅統(tǒng)計圖,下面給出了兩幅不完整的統(tǒng)計圖(如圖)請根據(jù)圖中提供的信息,回答下列問題:
(1)a=_____,請補(bǔ)全條形圖;
(2)求出在這次抽樣調(diào)查樣本數(shù)據(jù)中,眾數(shù)和中位數(shù);
(3)如果該區(qū)共有八年級學(xué)生2000人,請你估計“活動時間不少于7天”的學(xué)生人數(shù)大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2-4ax+b交x軸正半軸于A、B兩點(diǎn),交y軸正半軸于C,且OB=OC=3.
(1) 求拋物線的解析式;
(2) 如圖1,D為拋物線的頂點(diǎn),P為對稱軸左側(cè)拋物線上一點(diǎn),連接OP交直線BC于G,連GD.是否存在點(diǎn)P,使?若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3) 如圖2,將拋物線向上平移m個單位,交BC于點(diǎn)M、N.若∠MON=45°,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在中,∠B和∠C的平分線分別交直線AD于點(diǎn)E、點(diǎn)F,AB=5,若EF>4時,則AD的取值范圍是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線m:y=ax2+b(a<0,b>0)與x軸于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.將拋物線m繞點(diǎn)B旋轉(zhuǎn)180°,得到新的拋物線n,它的頂點(diǎn)為C1,與x軸的另一個交點(diǎn)為A1.若四邊形AC1A1C為矩形,則a,b應(yīng)滿足的關(guān)系式為( 。
A. ab=﹣2 B. ab=﹣3 C. ab=﹣4 D. ab=﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小飛研究二次函數(shù)y=-(x-m)2-m+1(m為常數(shù))性質(zhì)時如下結(jié)論:①這個函數(shù)圖象的頂點(diǎn)始終在直線y=-x+1上;②存在一個m的值,使得函數(shù)圖象的頂點(diǎn)與軸的兩個交點(diǎn)構(gòu)成等腰直角三角形;③點(diǎn)A(x1,y1)與點(diǎn)B(x2,y2)在函數(shù)圖象上,若x1<x2,x1+x2>2m,則y1<y2;④當(dāng)-1<x<2時,y隨x的增大而增大,則m的取值范圍為m≥2其中錯誤結(jié)論的序號是( )
A. ①B. ②C. ③D. ④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com