【題目】已知在中,∠B和∠C的平分線分別交直線AD于點E、點F,AB=5,若EF4時,則AD的取值范圍是____________.

【答案】0AD6AD14

【解析】

根據(jù)平行四邊形的性質(zhì)與角平分線的定義得到∠ABE=CBE=AEB,∠FCD=FCB=CFD,進而得到AB=AE=5,CD=DF=5,然后分情況討論分別求得AD的取值范圍即可.

解:∵ADBC,∠B、∠C的平分線分別交AD于點E、F,
∴∠ABE=CBE=AEB,∠FCD=FCB=CFD
AB=AE=5,CD=DF=5,

BECF相交時,AD=AE+DFEF,

EF4,

0AD6;

BECF不相交時,AD= AE+DF+EF,

AD14.

故答案為:0AD6AD14.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BACBC于點D,OAB上一點,經(jīng)過點A,D⊙O分別交AB,AC于點E,F(xiàn),連接OFAD于點G.

(1)求證:BC⊙O的切線;

(2)設(shè)AB=x,AF=y,試用含x,y的代數(shù)式表示線段AD的長;

(3)BE=8,sinB=,求DG的長,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點A(﹣1,0),B(3,0).下列結(jié)論:①2a﹣b=0;(a+c)2<b2;③當﹣1<x<3時,y<0;④當a=1時,將拋物線先向上平移2個單位,再向右平移1個單位,得到拋物線y=(x﹣2)2﹣2.其中正確的是( 。

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是邊長為的等邊三角形,邊在射線上,且,點從點出發(fā),沿OM的方向以1cm/s的速度運動,當D不與點A重合時,將繞點C逆時針方向旋轉(zhuǎn)60°得到,連接DE.

(1)如圖1,求證:是等邊三角形;

(2)如圖2,當6<t<10時,DE是否存在最小值?若存在,求出DE的最小值;若不存在,請說明理由.

(3)當點D在射線OM上運動時,是否存在以D,E,B為頂點的三角形是直角三角形?若存在,求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在RtABC中,ACB=90°,BE平分ABC,D是邊AB上一點,以BD為直徑的O經(jīng)過點E,且交BC于點F.

(1)求證:AC是O的切線;

(2)若BF=6,O的半徑為5,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標系中,設(shè)一次函數(shù)y1=mx+nm,n為常數(shù),且m≠0,m≠-n)與反比例函數(shù)y2=.

1)若y1y2的圖象有交點(1,5),且n=4m,當y1≥5時,y2的取值范圍;

2)若y1y2的圖象有且只有一個交點,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果批發(fā)商銷售每箱進價為40元的蘋果,物價部門規(guī)定每箱售價不得高于55元,市場調(diào)查發(fā)現(xiàn),若每箱以50元的價格銷售,平均每天銷售90箱,價格每提高1元,平均每天少銷售3箱.

1)求平均每天銷售量箱與銷售價/箱之間的函數(shù)關(guān)系式.

2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售價(元/箱)之間的函數(shù)關(guān)系式.

3)當每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A(a,1)、B(﹣1,b)都在雙曲線y=上,點P、Q分別是x軸、y軸上的動點,當四邊形PABQ的周長取最小值時,PQ所在直線的解析式是(

A.y=x B.y=x+1 C.y=x+2 D.y=x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】投資1萬元圍一個矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造.墻長24 m,平行于墻的邊的費用為200元/m,垂直于墻的邊的費用為150元/m,設(shè)平行于墻的邊長為x m.

(1)設(shè)垂直于墻的一邊長為y m,直接寫出y與x之間的函數(shù)關(guān)系式;

(2)若菜園面積為384 m2,求x的值;

(3)求菜園的最大面積.

查看答案和解析>>

同步練習(xí)冊答案