【題目】已知正方形ABCD的邊長(zhǎng)為4,一個(gè)以點(diǎn)A為頂點(diǎn)的45°角繞點(diǎn)A旋轉(zhuǎn),角的兩邊分別與BC、DC的延長(zhǎng)線交于點(diǎn)E、F,連接EF,設(shè)CE=a,CF=b.
(1)如圖1,當(dāng)a=4時(shí),求b的值;
(2)當(dāng)a=4時(shí),如圖2,求出b的值;
(3)如圖3,請(qǐng)寫出∠EAF繞點(diǎn)A旋轉(zhuǎn)的過(guò)程中a、b滿足的關(guān)系式,并說(shuō)明理由.
【答案】(1)4(2)8(3)32
【解析】
(1)先判斷出∠ACF=∠ACE,再判斷出∠CAF=∠CAE,進(jìn)而判斷出△ACF≌△ACE,即可得出結(jié)論;
(2)先判斷出∠AFC+∠CAF=45°,判斷出∠CAF=∠AEC,進(jìn)而判斷出△ACF∽△ECA,即可得出結(jié)論;
(3)(2)已證.
(1)∵四邊形ABCD是正方形,
∴∠BCF=∠DCE=90°
∵AC是正方形ABCD的對(duì)角線,
∴∠ACB=∠ACD=45°,
∴∠ACF=∠ACE,
∵AC是邊長(zhǎng)為4的正方形的對(duì)角線,
∴∠CAD=45°,AC=4,
∵a=CE=4,
∴AC=CE,
∴∠CAE=∠BEA,
∵四邊形ABCD是正方形,
∴AD∥BC,
∴∠DAE=∠BEA,
∴∠CAE=∠DAE=∠CAD=22.5°,
∵∠EAF=45°,
∴∠CAF=∠EAF﹣∠CAE=22.5°=∠CAE,
在△ACF和△ACE中,
,
∴△ACF≌△ACE,
∴b=CF=CE=4,
(2)∵AC是正方形ABCD的對(duì)角線,
∴∠BCD=90°,∠ACB=45°,
∴∠ACF=180°,
∴∠AFC+∠CAF=45°,
∵∠AFC+∠AEC=180°﹣(∠CFE+∠CEF)﹣∠EAF=180°﹣90°﹣45°=45°,
∴∠CAF=∠AEC,
∵∠ACF=∠ACE=135°,
∴△ACF∽△ECA,
∴,
∴EC×CF=AC2=2AB2=32
∴ab=32,
∵a=4,
∴b=8;
(3)ab=32,
理由:(2)已證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,點(diǎn)P是∠AOB內(nèi)部的一點(diǎn),按要求完成下列各小題.
(1)分別畫出點(diǎn)P關(guān)于OA、OB的對(duì)稱點(diǎn)分別為P1、P2,連接P1P2, 分別交OA、OB于點(diǎn)M、N兩點(diǎn).
(2)連接PM,PN,若P1P2=5cm,則△PMN的周長(zhǎng)= cm;
(3)畫射線OP1與OP2,若∠AOB=55°,則∠P1OP2= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ ABC中,AB=BC,M、N為BC邊上的兩點(diǎn),并且∠BAM=∠CAN,MN=AN,則∠MAC= 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,在ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,△AOB是等邊三角形,AB=4,求ABCD的面積.
(2)如圖2,在△ABC中,∠B=90°,∠A=30°,D是邊AB上一點(diǎn),∠BDC=45°,AD=4,求BC的長(zhǎng)(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了測(cè)量出樓房AC的高度,從距離樓底C處米的點(diǎn)D(點(diǎn)D與樓底C在同一水平面上)出發(fā),沿斜面坡度為i=1:的斜坡DB前進(jìn)30米到達(dá)點(diǎn)B,在點(diǎn)B處測(cè)得樓頂A的仰角為53°,求樓房AC的高度(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈,計(jì)算結(jié)果用根號(hào)表示,不取近似值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在圖所示的平面直角坐標(biāo)系中表示下面各點(diǎn):
A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(xiàn)(5,7)。
(1)A點(diǎn)到原點(diǎn)O的距離是__ __個(gè)單位長(zhǎng)。
(2)將點(diǎn)C向左平移6個(gè)單位,它會(huì)與點(diǎn) 重合。
(3)連接CE,則直線CE與y軸是什么位置關(guān)系?
(4)點(diǎn)F到x、y軸的距離分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=3cm,∠B=30°,點(diǎn)D在BC邊上由C向B勻速運(yùn)動(dòng)(D不與B、C重合),勻速運(yùn)動(dòng)速度為1cm/s,連接AD,作∠ADE=30°,DE交線段AC于點(diǎn)E.
(1)在此運(yùn)動(dòng)過(guò)程中,∠BDA逐漸變 (填“大”或“小”);D點(diǎn)運(yùn)動(dòng)到圖1位置時(shí),∠BDA=75°,則∠BAD= .
(2)點(diǎn)D運(yùn)動(dòng)3s后到達(dá)圖2位置,則CD= .此時(shí)△ABD和△DCE是否全等,請(qǐng)說(shuō)明理由;
(3)在點(diǎn)D運(yùn)動(dòng)過(guò)程中,△ADE的形狀也在變化,判斷當(dāng)△ADE是等腰三角形時(shí),∠BDA等于多少度(請(qǐng)直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)活動(dòng)課上,小明提出這樣一個(gè)問(wèn)題:∠B=∠C=90°,E是BC的中點(diǎn),DE平分∠ADC,∠CDE=55°.如圖,則∠EAB的度數(shù)為_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線AB:y=kx﹣2(k≠0)與反比例函數(shù)的圖象相交于點(diǎn)A和點(diǎn)B(﹣4,2),直線l的解析式為:y=x+b.
(1)求反比例函數(shù)和直線AB的解析式;
(2)若直線l恰好與反比例函數(shù)的圖象僅僅交于一個(gè)點(diǎn),求直線l的解析式;
(3)在(2)的條件下,如圖,若直線l與反比例函數(shù)的圖象交于第四象限的點(diǎn)C,求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com