【題目】在圖所示的平面直角坐標(biāo)系中表示下面各點(diǎn):
A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(xiàn)(5,7)。
(1)A點(diǎn)到原點(diǎn)O的距離是__ __個(gè)單位長(zhǎng)。
(2)將點(diǎn)C向左平移6個(gè)單位,它會(huì)與點(diǎn) 重合。
(3)連接CE,則直線CE與y軸是什么位置關(guān)系?
(4)點(diǎn)F到x、y軸的距離分別是多少?
【答案】(1)3 (2)D (3)CE平行于Y軸(4)F點(diǎn)到X軸的距離為7個(gè)單位長(zhǎng)度,到Y(jié)軸距離為5個(gè)單位長(zhǎng)度
【解析】
試題
易知A點(diǎn)到原點(diǎn)0的距離是3.
(2)將點(diǎn)C向軸的負(fù)方向平移6個(gè)單位,則點(diǎn)C向左平移6個(gè)單位到(-3,-5),它與點(diǎn)D重合。
(3)連結(jié)CE,易知C、E點(diǎn)坐標(biāo)關(guān)于x軸對(duì)應(yīng)數(shù)值相等。故CE平行于y軸。
(4)點(diǎn)F分別到、軸的距離是7和5
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)題意結(jié)合圖形填空:
已知:如圖,AD⊥BC于D,EG⊥BC與G,∠E=∠3,試問(wèn):AD是∠BAC的平分線嗎?若是,請(qǐng)說(shuō)明理由.
答:是,理由如下:
∵AD⊥BC,EG⊥BC(___________)
∴∠4=∠5=90°(___________________________)
∴AD∥EG(________________________________)
∴∠1=∠E____________________________)
∠2=∠3(__________________________________)
∵∠E=∠3(________________)
∴________________( 等量代換 )
∴AD是∠BAC的平分線(_____________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知:為等邊三角形,點(diǎn)E為射線AC上一點(diǎn),點(diǎn)D為射線CB上一點(diǎn),.
(1)如圖1,當(dāng)E在AC的延長(zhǎng)線上且時(shí),AD是的中線嗎?請(qǐng)說(shuō)明理由;
(2)如圖2,當(dāng)E在AC的延長(zhǎng)線上時(shí),等于AE嗎?請(qǐng)說(shuō)明理由;
(3)如圖3,當(dāng)D在線段CB的延長(zhǎng)線上,E在線段AC上時(shí),請(qǐng)直接寫(xiě)出AB、BD、AE的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年日本奧運(yùn)會(huì)的比賽門(mén)票開(kāi)始接受公眾預(yù)訂.下表為日本奧運(yùn)會(huì)官方票務(wù)網(wǎng)站公布的幾種球類比賽的門(mén)票價(jià)格,某球迷準(zhǔn)備用8000元預(yù)訂10張下表中比賽項(xiàng)目的門(mén)票.
比賽項(xiàng)目 | 票價(jià)(元/場(chǎng)) |
男籃 | 1000 |
足球 | 800 |
乒乓球 | 500 |
(1)若全部資金用來(lái)預(yù)訂男籃門(mén)票和乒乓球門(mén)票,問(wèn)他可以訂男籃門(mén)票和乒乓球門(mén)票各多少?gòu)垼?/span>
(2)若在現(xiàn)有資金8000元允許的范圍內(nèi)和總票數(shù)不變的前提下,他想預(yù)訂下表中三種球類門(mén)票,其中男籃門(mén)票數(shù)與足球門(mén)票數(shù)相同,且乒乓球門(mén)票的費(fèi)用不超過(guò)男籃門(mén)票的費(fèi)用,求他能預(yù)訂三種球類門(mén)票各多少?gòu)垼?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD的邊長(zhǎng)為4,一個(gè)以點(diǎn)A為頂點(diǎn)的45°角繞點(diǎn)A旋轉(zhuǎn),角的兩邊分別與BC、DC的延長(zhǎng)線交于點(diǎn)E、F,連接EF,設(shè)CE=a,CF=b.
(1)如圖1,當(dāng)a=4時(shí),求b的值;
(2)當(dāng)a=4時(shí),如圖2,求出b的值;
(3)如圖3,請(qǐng)寫(xiě)出∠EAF繞點(diǎn)A旋轉(zhuǎn)的過(guò)程中a、b滿足的關(guān)系式,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長(zhǎng)線上的一點(diǎn),BE=BA,過(guò)E作EF⊥AB,F為垂足.下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正確的是( 。
A.①②③B.①③④C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,點(diǎn)D是邊BC上一動(dòng)點(diǎn)(不與B,C重合),∠ADE=∠B=α,DE交AC于點(diǎn)E,且cosα=.下列結(jié)論:①△ADE∽△ACD;②當(dāng)BD=6時(shí),△ABD與△DCE全等;③△DCE為直角三角形時(shí),BD為8或;④0<CE≤6.4.其中正確的結(jié)論是______________.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)O是六邊形ABCDEF的中心,圖中所有的三角形都是等邊三角形,則下列說(shuō)法正確的是( )
A. △ODE繞點(diǎn)O順時(shí)針旋轉(zhuǎn)60°得到△OBC B. △ODE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)120°得到△OAB
C. △ODE繞點(diǎn)F順時(shí)針旋轉(zhuǎn)60°得到△OAB D. △ODE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得△OAB
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com