【題目】已知在中,,過點引一條射線,是上一點.
(1)如圖1,,射線在內(nèi),,求證:.
請根據(jù)以下思維框圖,寫出證明過程.
(2)如圖2,已知.
①當射線在內(nèi),求的度數(shù).
②當射線在下方,請問的度數(shù)會變嗎?若不變,請說明理由;若改變,請直接寫出的度數(shù).
(3)在第(2)題的條件下,作于點,連結,已知,,求的面積.
【答案】(1)見解析;(2)①;②會變,;(3)或.
【解析】
(1)根據(jù)SAS可證明 ,再利用三角形內(nèi)角和即可得求證的度數(shù)為60°;
(2)①在上取一點,,根據(jù)SAS可證明,再利用三角形內(nèi)角和即可得求得的度數(shù);
②在延長線上取一點,使得,根據(jù)SAS可證明,再利用三角形內(nèi)角和即可得求得的度數(shù),與①進行比較即可得出答案;
(3)分當射線在內(nèi):作,可得△DCH是30°的直角三角形,可得CH的長度,即可得出△CDF的面積. 當射線在下方:由等腰三角形AED的性質(zhì)可得,即可得出△CDF的面積.
解:(1)在上取一點,使.
,是等邊三角形.
,,
是正三角形,
,
,
,
.
(2)①在上取一點,,
,且,
,,
,
,
,
,
.
②會變.
在延長線上取一點,使得,
同理可得:,
,
.
(3)當射線在內(nèi),如圖,
,
且,,
,
作,
,,
,
,
,
當射線在下方:如圖,
,
且,,
.
,
.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解
材料一:已知在平面直角坐標系中有兩點,,其兩點間的距離公式為:,當兩點所在直線在坐標軸上或平行于坐標軸或垂直于坐標軸時,兩點間的距離公式可化簡為或;
材料二:如圖1,點,在直線的同側,直線上找一點,使得的值最小.解題思路:如圖2,作點關于直線的對稱點,連接交直線于,則點,之間的距離即為的最小值.
請根據(jù)以上材料解決下列問題:
(1)已知點在平行于軸的直線上,點在第二象限的角平分線上,,求點的坐標;
(2)如圖,在平面直角坐標系中,點,點,請在直線上找一點,使得最小,求出的最小值及此時點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,已知AB=AD=2,BC=3,CD=1,∠A=90°.
(1)求BD的長;
(2)求∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD與正方形CEFG,M是AF的中點,連接DM,EM.
(1)如圖1,點E在CD上,點G在BC的延長線上,請判斷DM,EM的數(shù)量關系與位置關系,并直接寫出結論;
(2)如圖2,點E在DC的延長線上,點G在BC上,(1)中結論是否仍然成立?請證明你的結論;
(3)將圖1中的正方形CEFG繞點C旋轉,使D,E,F(xiàn)三點在一條直線上,若AB=13,CE=5,請畫出圖形,并直接寫出MF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c的頂點為D(-1,2),與x軸的一個交點A在點(-3,0)和(-2,0)之間,其部分圖象如圖,則以下結論:①b2-4ac<0;②當x>-1時y隨x增大而減;③a+b+c<0;④若方程ax2+bx+c-m=0沒有實數(shù)根,則m>2;⑤3a+c<0.其中,正確結論的序號是________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,E為AB的中點.
(1)求證:△ADC∽△ACB;
(2)CE與AD有怎樣的位置關系?試說明理由;
(3)若AD=4,AB=6,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】由于只有1張市運動會開幕式的門票,小王和小張都想去,兩人商量采取轉轉盤(如圖,轉盤盤面被分為面積相等,且標有數(shù)字1,2,3,4的4個扇形區(qū)域)的游戲方式?jīng)Q定誰勝誰去觀看.規(guī)則如下:兩人各轉動轉盤一次,當轉盤指針停止,如兩次指針對應盤面數(shù)字都是奇數(shù),則小王勝;如兩次指針對應盤面數(shù)字都是偶數(shù),則小張勝;如兩次指針對應盤面數(shù)字是一奇一偶,視為平局.若為平局,繼續(xù)上述游戲,直至分出勝負.
如果小王和小張按上述規(guī)則各轉動轉盤一次,則
(1)小王轉動轉盤,當轉盤指針停止,對應盤面數(shù)字為奇數(shù)的概率是多少?
(2)該游戲是否公平?請用列表或畫樹狀圖的方法說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(11·漳州)(滿分8分)漳州市某中學對全校學生進行文明禮儀知識測試,為了解測試結果,隨機抽取部分學生的成績進行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖(不完整).請你根據(jù)圖中所給的信息解答下列問題:
(1)請將以上兩幅統(tǒng)計圖補充完整;
(2)若“一般”和“優(yōu)秀”均被視為達標成績,則該校被抽取的學生中有_ ▲ 人達標;
(3)若該校學生有1200人,請你估計此次測試中,全校達標的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:關于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標;
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到 達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com