【題目】已知正方形ABCD與正方形CEFG,M是AF的中點(diǎn),連接DM,EM.
(1)如圖1,點(diǎn)E在CD上,點(diǎn)G在BC的延長(zhǎng)線上,請(qǐng)判斷DM,EM的數(shù)量關(guān)系與位置關(guān)系,并直接寫(xiě)出結(jié)論;
(2)如圖2,點(diǎn)E在DC的延長(zhǎng)線上,點(diǎn)G在BC上,(1)中結(jié)論是否仍然成立?請(qǐng)證明你的結(jié)論;
(3)將圖1中的正方形CEFG繞點(diǎn)C旋轉(zhuǎn),使D,E,F(xiàn)三點(diǎn)在一條直線上,若AB=13,CE=5,請(qǐng)畫(huà)出圖形,并直接寫(xiě)出MF的長(zhǎng).
【答案】(1)DM⊥EM,DM=EM,理由見(jiàn)解析; (2)DM⊥EM,DM=EM,理由見(jiàn)解析;(3)滿足條件的MF的值為或.
【解析】(1)結(jié)論:DM⊥EM,DM=EM.只要證明△AMH≌△FME,推出MH=ME,AH=EF=EC,推出DH=DE,因?yàn)椤?/span>EDH=90°,可得DM⊥EM,DM=ME;
(2)結(jié)論不變,證明方法同(1)類似;
(3)分兩種情形畫(huà)出圖形,利用勾股定理以及等腰直角三角形的性質(zhì)解決問(wèn)題即可.
(1)結(jié)論:DM⊥EM,DM=EM,
理由:如圖1中,延長(zhǎng)EM交AD于H,
∵四邊形ABCD是正方形,四邊形EFGC是正方形,
∴∠ADE=∠DEF=90°,AD=CD,
∴AD∥EF,
∴∠MAH=∠MFE,
∵AM=MF,∠AMH=∠FME,
∴△AMH≌△FME,
∴MH=ME,AH=EF=EC,
∴DH=DE,
∵∠EDH=90°,
∴DM⊥EM,DM=ME;
(2)如圖2中,結(jié)論不變.DM⊥EM,DM=EM,
理由:如圖2中,延長(zhǎng)EM交DA的延長(zhǎng)線于H,
∵四邊形ABCD是正方形,四邊形EFGC是正方形,
∴∠ADE=∠DEF=90°,AD=CD,
∴AD∥EF,
∴∠MAH=∠MFE,
∵AM=MF,∠AMH=∠FME,
∴△AMH≌△FME,
∴MH=ME,AH=EF=EC,
∴DH=DE,
∵∠EDH=90°,
∴DM⊥EM,DM=ME;
(3)如圖3中,作MR⊥DE于R,
在Rt△CDE中,DE==12,
∵DM=NE,DM⊥ME,
∴MR=⊥DE,MR=DE=6,DR=RE=6,
在Rt△FMR中,FM=,
如圖4中,作MR⊥DE于R,
在Rt△MRF中,FM=,
故滿足條件的MF的值為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在△ABC中,AB=AC,以BC為直角邊作等腰Rt△BCD,∠CBD=90°,斜邊CD交AB于點(diǎn)E.
(1)如圖1,若∠ABC=60°,BE=4,作EH⊥BC于H,求線段CE的長(zhǎng);
(2)如圖2,作CF⊥AC,且CF=AC,連接BF,且E為AB中點(diǎn),求證:CD=2BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某直銷公司現(xiàn)有名推銷員,月份每個(gè)人完成銷售額(單位:萬(wàn)元),數(shù)據(jù)如下:
整理上面的數(shù)據(jù)得到如下統(tǒng)計(jì)表:
銷售額 | ||||||||||
人數(shù) |
(1)統(tǒng)計(jì)表中的 ; ;
(2)銷售額的平均數(shù)是 ;眾數(shù)是 ;中位數(shù)是 .
(3)月起,公司為了提高推銷員的積極性,將采取績(jī)效工資制度:規(guī)定一個(gè)基本銷售額,在基本銷售額內(nèi),按抽成;從公司低成本與員工愿意接受兩個(gè)層面考慮,你認(rèn)為基本銷售額定位多少萬(wàn)元?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn):如圖1, 和均為等邊三角形,點(diǎn)在同一直線上,連接
①求證:; ②求的度數(shù).
(2)拓展探究:如圖2, 和均為等腰直角三角形,,點(diǎn)在同一直線上為中邊上的高,連接
①求的度數(shù):
②判斷線段之間的數(shù)量關(guān)系(直接寫(xiě)出結(jié)果即可).
解決問(wèn)題:如圖3,和均為等腰三角形,,點(diǎn)在同一直線上,連接.求的度數(shù)(用含的代數(shù)式表示,直接寫(xiě)出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙P經(jīng)過(guò)x軸上一點(diǎn)C,與y軸分別相交于A、B兩點(diǎn),連接AP并延長(zhǎng)分別交⊙P、x軸于點(diǎn)D、點(diǎn)E,連接DC并延長(zhǎng)交y軸于點(diǎn)F ,且DC=FC,點(diǎn)D的坐標(biāo)為(12,-2).
(1)判斷⊙P與x軸的位置關(guān)系,并說(shuō)明理由;
(2)求⊙P半徑;
(3)若弧BD上有一動(dòng)點(diǎn)M,連接AM,過(guò)B點(diǎn)作BN⊥AM,垂足為N,連DN,則DN的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A(1,0),B(0,2),以AB為邊在第一象限內(nèi)作正方形ABCD,直線CD與y軸交于點(diǎn)G,再以DG為邊在第一象限內(nèi)作正方形DEFG,若反比例函數(shù)的圖像經(jīng)過(guò)點(diǎn)E,則k的值是 ( )
(A)33 (B)34 (C)35 (D)36
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在中,,過(guò)點(diǎn)引一條射線,是上一點(diǎn).
(1)如圖1,,射線在內(nèi),,求證:.
請(qǐng)根據(jù)以下思維框圖,寫(xiě)出證明過(guò)程.
(2)如圖2,已知.
①當(dāng)射線在內(nèi),求的度數(shù).
②當(dāng)射線在下方,請(qǐng)問(wèn)的度數(shù)會(huì)變嗎?若不變,請(qǐng)說(shuō)明理由;若改變,請(qǐng)直接寫(xiě)出的度數(shù).
(3)在第(2)題的條件下,作于點(diǎn),連結(jié),已知,,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校舉辦了一次知識(shí)競(jìng)賽,滿分10分,學(xué)生得分均為整數(shù),成績(jī)達(dá)到6分以上(包括6分)為合格,達(dá)到9分以上(包括9分)為優(yōu)秀.這次競(jìng)賽中甲、乙兩組學(xué)生成績(jī)分布的條形統(tǒng)計(jì)圖如圖所示.
(1)補(bǔ)充完成下面的成績(jī)統(tǒng)計(jì)分析表:
(2)小明同學(xué)說(shuō):“這次競(jìng)賽我得了7分,在我們小組中排名屬中游偏上!”觀察上表可知,小明是 組的學(xué)生;(填“甲”或“乙”)
(3)甲組同學(xué)說(shuō)他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績(jī)好于乙組.但乙組同學(xué)不同意甲組同學(xué)的說(shuō)法,認(rèn)為他們組的成績(jī)要好于甲組,請(qǐng)你給出兩條支持乙組同學(xué)觀點(diǎn)的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,垂足為.
(1)填空:_________°;
(2)是線段上的動(dòng)點(diǎn),連結(jié),將線段繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn),點(diǎn)的對(duì)應(yīng)點(diǎn)是點(diǎn),連接,得到.
①如圖1,若點(diǎn)在直線上, ,求的值.
②連結(jié),直線A直線是否平行,為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com