【題目】為了鼓勵節(jié)能降耗,某市規(guī)定如下用電收費標準:用戶每月的用電量不超過120度時,電價為x/度;超過120度時,不超過部分仍為x/度,超過部分為y/度.已知某用戶5月份用電115度,交電費69元,6月份用電140度,付電費94元.

1)求xy的值;

2)若該用戶計劃7月份所付電費不超過83元,問該用戶7月份最多可用電多少度?

【答案】1;(2)若該用戶計劃7月份所付電費不超過83元,問該用戶7月份最多可用電130度.

【解析】

1)根據(jù)56月份的用電量及所交電費可得出二元一次方程組,解出即可;
2)先判斷出是否超過120度,然后列方程計算即可.

1)由題意得,


解得:

2)用電量為120度時需要交電費72元,

設(shè)該用戶7月份最多可用電x度,

由題意得,120×0.6+1.1x120)=83,

解得:x130,

答:若該用戶計劃7月份所付電費不超過83元,該用戶7月份最多可用電130度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在兩個全等的等腰直角三角形ABCEDC,∠ACB=ECD=90°,A與點E重合D與點B重合.現(xiàn)△ABC不動,把△EDC繞點C按順時針方向旋轉(zhuǎn)旋轉(zhuǎn)角為α(0°<α<90°).

(1)如圖②,ABCE交于點F,EDAB,BC分別交于點M,H.求證:CF=CH;

(2)如圖③α=45°,試判斷四邊形ACDM的形狀并說明理由;

(3)如圖②在△EDC繞點C旋轉(zhuǎn)的過程中,連結(jié)BD,當旋轉(zhuǎn)角α的度數(shù)為多少時,△BDH是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCABC,ACB=90°B=50°,點B在線段AB上,AC,AB交于點O,則COA的度數(shù)是(

A.50°B.60°

C.45°D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)課本習(xí)題回放:如圖①,ACB=90°,AC=BC, ADCE,BECE,垂足分別為D,E,AD=2.5cmDE=1.7cm..BE的長.

2)探索證明:如圖②,點B、C在∠MAN的邊AM、AN上,點E, F在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是ABE、CAF的外角.已知AB=AC,1=2=BAC.求證:ABE≌△CAF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點,過點DDEAB,DFAC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,EAB邊上的中點,連接DE并延長,交CB的延長線于點F

求證:;

若平行四邊形ABCD的面積為32,試求四邊形EBCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請認真閱讀下面的數(shù)學(xué)小探究系列,完成所提出的問題:

探究1:如圖1,在等腰直角三角形ABC中,,,將邊AB繞點B順時針旋轉(zhuǎn)得到線段BD,連接求證:的面積為提示:過點DBC邊上的高DE,可證

探究2:如圖2,在一般的中,,,將邊AB繞點B順時針旋轉(zhuǎn)得到線段BD,連接請用含a的式子表示的面積,并說明理由.

探究3:如圖3,在等腰三角形ABC中,,,將邊AB繞點B順時針旋轉(zhuǎn)得到線段BD,連接試探究用含a的式子表示的面積,要有探究過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,連接BD,點OBD的中點,若M、N是邊AD上的兩點,連接MO、NO,并分別延長交邊BC于兩點M′、N′,則圖中的全等三角形共有( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,lA、lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關(guān)系。

1B出發(fā)時與A相距 千米。

2)走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是 小時。

3B出發(fā)后 小時與A相遇。

4)求出A行走的路程S與時間t的函數(shù)關(guān)系式。

5)求出當 t1.5B走的路程S與時間t的函數(shù)關(guān)系式

查看答案和解析>>

同步練習(xí)冊答案