【題目】一元二次方程x2﹣4=0的解是._________

【答案】x=±2

【解析】

移項得x2=4,

∴x=±2

故答案是:x=±2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O的內(nèi)接四邊形ACDB中,AB為直徑,ACBC=1:2,點D的中點,BECD垂足為E

(1)BCE的度數(shù);

(2)求證:DCE的中點;

(3)連接OEBC于點F,若AB,求OE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,平行四邊形ABCD中,AB=5,AD=12,BD=13.求證:平行四邊形ABCD是矩形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程x2﹣4x+c=0有兩個相等的實數(shù)根,則常數(shù)c的值為(
A.±4
B.4
C.±16
D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,把點P(﹣5,3)向右平移8個單位得到點P1 , 再將點P1繞原點旋轉(zhuǎn)90°得到點P2 , 則點P2的坐標(biāo)是(
A.(3,﹣3)
B.(﹣3,3)
C.(3,3)或(﹣3,﹣3)
D.(3,﹣3)或(﹣3,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D,F(xiàn)在線段AB上,點E,G分別在線段BC和AC上,CD∥EF,∠1=∠2.
(1)判斷DG與BC的位置關(guān)系,并說明理由;
(2)若DG是∠ADC的平分線,∠3=85°,且∠DCE:∠DCG=9:10,試說明AB與CD有怎樣的位置關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】56.2萬平方米用科學(xué)記數(shù)法表示正確的是(
A.5.62×104m2
B.56.2×104m2
C.5.62×105m2
D.0.562×103m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家統(tǒng)計局2011年初公布數(shù)據(jù)顯示,2010年全年國內(nèi)生產(chǎn)總值398000億元,超過日本,成為全球第二大經(jīng)濟體,用科學(xué)記數(shù)法可表示為(
A.0.398×106億元
B.3.98×105億元
C.39.8×104億元
D.398×103億元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知任意三角形的三邊長,如何求三角形面積?

古希臘的幾何學(xué)家海倫解決了這個問題,在他的著作《度量論》一書中給出了計算公式﹣﹣海倫公式S=(其中ab,c是三角形的三邊長,p=,S為三角形的面積),并給出了證明

例如:在△ABC中,a=3,b=4c=5,那么它的面積可以這樣計算:

a=3,b=4,c=5p==6,S===6

事實上,對于已知三角形的三邊長求三角形面積的問題,還可用我國南宋時期數(shù)學(xué)家秦九韶提出的秦九韶公式等方法解決.

如圖,在△ABC中,BC=5,AC=6,AB=9

1)用海倫公式求△ABC的面積;

2)求△ABC的內(nèi)切圓半徑r

查看答案和解析>>

同步練習(xí)冊答案