精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平行四邊形ABCD中,點E為邊DC上一點,且DEEC=31,連接AE并延長,與BC的延長線交于點GAEBD交于點F,則GEC的面積與DEF的面積之比為(

A.13B.37C.421D.727

【答案】D

【解析】

通過△DFE和△BFA的相似比得出△DFE和△DEA的高的比,繼而得出面積之比,再通過△ADE和△GCE的相似比得出面積比,從而得出△GCE和△DEF的面積之比.

解:由題意可知,在平行四邊形ABCD中,△DFE∽△BFA,△ADE∽△GCE,

DEEC=31CD=AB,

∴△DFE和△BFA的相似比為34,

∴△DFE和△BFA的高的比為34,

∴△DFE和△DEA的面積比為37,

∵△ADE∽△GCE,ECCD =14,

∴△ADE和△GCE的面積比為91

∴△GCE和△DEF的面積比為:727.

故選D.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某中學舉行中國夢,我的夢的演講比賽,賽后整理參賽學生的成績,將學生的成績分為A、B、C、D四個等級,并將結果繪制成如圖所示的條形統計圖和扇形統計圖,但均不完整,請你根據統計圖解答下列問題.

1)參加比賽的學生共有 名,在扇形統計圖中,表示“D等級的扇形的圓心角為 度,圖中m的值為

2)補全條形統計圖;

3)組委會決定分別從本次比賽中獲利AB兩個等級的學生中,各選出1名學生培訓后搭檔去參加市中學生演講比賽,已知甲的等級為A,乙的等級為B,求同時選中甲和乙的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點P在以D(4,4)為圓心,1為半徑的圓上運動,且始終滿足∠BPC=90°,則a的最大值是______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家家電下鄉(xiāng)政策的實施,商場決定采取適當的降價措施.調查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.

1)假設每臺冰箱降價x元,商場每天銷售這種冰箱的利潤是y元,請寫出yx之間的函數表達式;(不要求寫自變量的取值范圍)

2)商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應降價多少元?

3)每臺冰箱降價多少元時,商場每天銷售這種冰箱的利潤最高?最高利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“早黑寶”葡萄品種是我省農科院研制的優(yōu)質新品種,在我省被廣泛種植,鄧州市某葡萄種植基地2017年種植“早黑寶”100畝,到2019年“卓黑寶”的種植面積達到196.

1)求該基地這兩年“早黑寶”種植面積的平均增長率;

2)市場調查發(fā)現,當“早黑寶”的售價為20/千克時,每天能售出200千克,售價每降價1元,每天可多售出50千克,為了推廣宣傳,基地決定降價促銷,同時減少庫存,已知該基地“早黑寶”的平均成本價為12/千克,若使銷售“早黑寶”每天獲利1750元,則售價應降低多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小林在使用筆記本電腦時,為了散熱,他將電腦放在散熱架CAD上,忽略散熱架和電腦的厚度,側面示意圖如圖1所示,已知電腦顯示屏OB與底板OA的夾角為135°,OB=OA=25cm,OEAD于點E,OE=12.5cm.

1)求∠OAE的度數;

2)若保持顯示屏OB與底板OA135°夾角不變,將電腦平放在桌面上如圖2中的所示,則顯示屏頂部比原來頂部B大約下降了多少?(參考數據:結果精確到0.1cm.參考數據:sin75°≈0.97,cos75°≈0.26tan75°≈3.73,)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時出發(fā),勻速行駛.設行駛的時間為x(時),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至快車到達乙地過程中yx之間的函數關系.已知兩車相遇時快車比慢車多行駛60千米.若快車從甲地到達乙地所需時間為t時,則此時慢車與甲地相距_____千米.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某大學生創(chuàng)業(yè)團隊有研發(fā)、管理和操作三個小組,各組的日工資和人數如下表所示.現從管理組分別抽調1人到研發(fā)組和操作組,調整后與調整前相比,下列說法中不正確的是(

A.團隊平均日工資不變B.團隊日工資的方差不變

C.團隊日工資的中位數不變D.團隊日工資的極差不變

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,一次函數ykx+bk≠0)與反比例函數ym≠0)的圖象交于第二、四象限A、B兩點,過點AADx軸于D,AD4,sinAOD,且點B的坐標為(n,﹣2).

1)求一次函數與反比例函數的解析式;

2)請直接寫出滿足kx+bx的取值范圍;

3Ey軸上一點,且△AOE是等腰三角形,請直接寫出所有符合條件的E點坐標.

查看答案和解析>>

同步練習冊答案