【題目】如圖所示,中,邊上一點(diǎn),的中點(diǎn),過(guò)點(diǎn)的平行線交的延長(zhǎng)線于,且,連接

1)求證:的中點(diǎn);

2)若,試判斷四邊形的形狀,并證明你的結(jié)論.

【答案】1)見(jiàn)解析;(2)矩形,理由見(jiàn)解析;

【解析】

1)根據(jù)兩直線平行,內(nèi)錯(cuò)角相等求出∠AFE=DCE,然后利用角角邊證明△AEF和△DEC全等,再根據(jù)全等三角形的性質(zhì)和等量關(guān)系即可求解;
2)由(1)知AF平行等于BD,易證四邊形AFBD是平行四邊形,而AB=AC,AD是中線,利用等腰三角形三線合一定理,可證ADBC,即∠ADB=90°,那么可證四邊形AFBD是矩形.

1

證明:∵AFBC,
∴∠AFE=DCE
∵點(diǎn)EAD的中點(diǎn),
AE=DE
AEFDEC中,

∴△AEF≌△DECAAS),
AF=CD,
AF=BD,
CD=BD,
DBC的中點(diǎn);

2)解:若AB=AC,則四邊形AFBD是矩形.理由如下:
∵△AEF≌△DEC,
AF=CD
AF=BD,
CD=BD
AFBD,AF=BD
∴四邊形AFBD是平行四邊形,
AB=AC,BD=CD
∴∠ADB=90°,
∴平行四邊形AFBD是矩形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A從原點(diǎn)出發(fā)沿?cái)?shù)軸向左運(yùn)動(dòng),同時(shí),點(diǎn)B也從原點(diǎn)出發(fā)沿?cái)?shù)軸向右運(yùn)動(dòng),3秒后,兩點(diǎn)相距15個(gè)單位長(zhǎng)度.已知點(diǎn)B的速度是點(diǎn)A的速度的4倍(速度單位:?jiǎn)挝婚L(zhǎng)度/秒).

1)求出點(diǎn)A、點(diǎn)B運(yùn)動(dòng)的速度,并在數(shù)軸上標(biāo)出AB兩點(diǎn)從原點(diǎn)出發(fā)運(yùn)動(dòng)3秒時(shí)的位置;

2)若AB兩點(diǎn)從(1)中的位置開(kāi)始,仍以原來(lái)的速度同時(shí)沿?cái)?shù)軸向左運(yùn)動(dòng),幾秒時(shí),原點(diǎn)恰好處在點(diǎn)A、點(diǎn)B的正中間?

3)若A、B兩點(diǎn)從(1)中的位置開(kāi)始,仍以原來(lái)的速度同時(shí)沿?cái)?shù)軸向左運(yùn)動(dòng)時(shí),另一點(diǎn)C同時(shí)從B點(diǎn)位置出發(fā)向A點(diǎn)運(yùn)動(dòng),當(dāng)遇到A點(diǎn)后,立即返回向B點(diǎn)運(yùn)動(dòng),遇到B點(diǎn)后又立即返回向A點(diǎn)運(yùn)動(dòng),如此往返,直到B點(diǎn)追上A點(diǎn)時(shí),C點(diǎn)立即停止運(yùn)動(dòng).若點(diǎn)C一直以20單位長(zhǎng)度/秒的速度勻速運(yùn)動(dòng),那么點(diǎn)C從開(kāi)始運(yùn)動(dòng)到停止運(yùn)動(dòng),行駛的路程是多少個(gè)單位長(zhǎng)度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(a ,2)是直線y=x上一點(diǎn),以A為圓心,2為半徑作⊙A,若P(x,y)是第一象限內(nèi)⊙A上任意一點(diǎn),則的最小值為(

A. 1 B. C. —1 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB,CD相交于點(diǎn)O,OA平分EOC

(1)若EOC=70°,求BOD的度數(shù);

(2)若EOCEOD=2:3,求BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)如圖所示的數(shù)軸,解答下面問(wèn)題.

1)分別寫出、兩點(diǎn)所表示的有理數(shù);

2)請(qǐng)問(wèn)、兩點(diǎn)之間的距離是多少?

3)在數(shù)軸上畫出與點(diǎn)距離為2的點(diǎn)(用不同于、的其它字母表).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一個(gè)數(shù)值轉(zhuǎn)換機(jī),原理如圖所示,若開(kāi)始輸入的x的值是7,可發(fā)現(xiàn)第1次輸出的結(jié)果是12,2次輸出的結(jié)果是6,...依次繼續(xù)下去

1)請(qǐng)列式計(jì)算第3次到第8次的輸出結(jié)果;

2)你根據(jù)(1)中所得的結(jié)果找到了規(guī)律嗎?計(jì)算2013次輸出的結(jié)果是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將正方形 ABCD (如圖 1)作如下劃分:

1次劃分:分別連接正方形ABCD對(duì)邊的中點(diǎn)(如圖2),得線段HFEG,它們交于點(diǎn)M,此時(shí)圖2中共有5個(gè)正方形;

2次劃分:將圖2 左上角正方形AEMH再作劃分,得圖3,則圖3 中共有9個(gè)正方形;

1)若每次都把左上角的正方形依次劃分下去,則第100次劃分后,圖中共有 個(gè)正方形;

2)繼續(xù)劃分下去,第幾次劃分后能有805個(gè)正方形?寫出計(jì)算過(guò)程.

3)按這種方法能否將正方形ABCD劃分成有2015個(gè)正方形的圖形?如果能,請(qǐng)算出是第幾次劃分,如果不能,需說(shuō)明理由.

4)如果設(shè)原正方形的邊長(zhǎng)為1,通過(guò)不斷地分割該面積為1的正方形,并把數(shù)量關(guān)系和幾何圖形巧妙地結(jié)合起來(lái),可以很容易得到一些計(jì)算結(jié)果,試著探究求出下面表達(dá)式的結(jié)果吧.

計(jì)算 .( 直接寫出答案即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017山東省泰安市)如圖,四邊形ABCD中,AB=AC=ADAC平分∠BAD,點(diǎn)PAC延長(zhǎng)線上一點(diǎn),且PDAD

(1)證明:∠BDC=PDC;

(2)若ACBD相交于點(diǎn)E,AB=1,CE:CP=2:3,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)軸上三點(diǎn)AO,B表示的數(shù)分別為6,0,-4,動(dòng)點(diǎn)PA出發(fā),以每秒6個(gè)單位的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng).

1)當(dāng)點(diǎn)P到點(diǎn)A的距離與點(diǎn)P到點(diǎn)B的距離相等時(shí),點(diǎn)P在數(shù)軸上表示的數(shù)是 ;

2)另一動(dòng)點(diǎn)RB出發(fā),以每秒4個(gè)單位的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、R同時(shí)出發(fā),問(wèn)點(diǎn)P運(yùn)動(dòng)多少時(shí)間追上點(diǎn)R?

3)若MAP的中點(diǎn),NPB的中點(diǎn),點(diǎn)P在運(yùn)動(dòng)過(guò)程中,線段MN的長(zhǎng)度是否發(fā)生變化?若發(fā)生變化,請(qǐng)你說(shuō)明理由;若不變,請(qǐng)你畫出圖形,并求出線段MN的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案