【題目】如圖,已知點B、C、D在同一條直線上,△ABC和△CDE都是等邊三角形.BE交AC于F,AD交CE于H,
①求證:△BCE≌△ACD;
②求證:CF=CH;
③判斷△CFH的形狀并說明理由。
【答案】①證明見解析②證明△BCF≌△ACH;③△CFH是等邊三角形
【解析】試題分析:①利用等邊三角形的性質(zhì)得出條件,可證明:△BCE≌△ACD;
②利用△BCE≌△ACD得出∠CBF=∠CAH,再運用平角定義得出∠BCF=∠ACH進而得出△BCF≌△ACH因此CF=CH.
③由CF=CH和∠ACH=60°根據(jù)“有一個角是60°的三角形是等邊三角形可得△CFH是等邊三角形.
試題解析:①證明:∵∠BCA=∠DCE=60°,
∴∠BCE=∠ACD.
又BC=AC、CE=CD,
∴△BCE≌△ACD.
②∵△BCE≌△ACD,
∴∠CBF=∠CAH.
∵∠ACB=∠DCE=60°,
∴∠ACH=60°.
∴∠BCF=∠ACH.
又BC=AC,
∴△BCF≌△ACH.
∴CF=CH.
③∵CF=CH,∠ACH=60°,
∴△CFH是等邊三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果點M以3厘米/秒的速度運動.
(1)如果點M在線段CB上由點C向點B運動,點N在線段BA上由B點向A點運動.它們同時出發(fā),若點N的運動速度與點M的運動速度相等.
①經(jīng)過2秒后,△BMN和△CDM是否全等?請說明理由.
②當兩點的運動時間為多少時,△BMN是一個直角三角形?
(2)若點N的運動速度與點M的運動速度不相等,點N從點B出發(fā),點M以原來的運動速度從點C同時出發(fā),都順時針沿△ABC三邊運動,經(jīng)過25秒點M與點N第一次相遇,則點N的運動速度是 厘米/秒.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD,AC、BD相交于點O,E為AC上一點,AH⊥EB交EB于點H,AH交BD于點F.
(1)若點E在圖1的位置,判斷OE與OF的數(shù)量關系,并證明你的結論;
(2)若點E在AC的延長線上,請在圖2中按題目要求補全圖形,判斷OE與OF的數(shù)量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了估計西瓜、蘋果和香蕉三種水果一個月的銷售量,某水果店對這三種水果7天的銷售量進行了統(tǒng)計,統(tǒng)計結果如圖所示:
(1)若西瓜、蘋果和香蕉的售價分別是6元/千克、8元/千克和3元/千克,則這7天銷售額最大的水果品種是;
(2)估計一個月(按30天計算)該水果店可銷售蘋果多少千克?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中,(1)﹣a 一定是負數(shù);(2)|﹣a|一定是正數(shù);(3)倒數(shù)等于它本身的數(shù)是±1;(4)絕對值等于它本身的數(shù)是 1.其中正確的個數(shù)是( )
A. 1 個 B. 2 個 C. 3 個 D. 4 個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分12分) 在平面直角坐標系中,直線交軸、軸分別于點、點,將△繞坐標原點逆時針旋轉得到△.直線交直線于點,如圖1.
(1))求:直線的函數(shù)關系式.
(2)如圖2,連接,過點作交直線于點,如圖2.
① 求證: =.
② 求:點的坐標.
(3)若點是直線上一點,點是軸上一點(點不與點重合),當△和△全等時,直接寫出點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com