【題目】已知,如圖,正方形ABCD中,E為BC邊上一點(diǎn),F(xiàn)為BA延長(zhǎng)線上一點(diǎn),且CE=AF.連接DE、DF.求證:DE=DF.
【答案】證明:∵四邊形ABCD是正方形, ∴AD=CD,∠DAB=∠C=90°,
∴∠FAD=180°﹣∠DAB=90°.
在△DCE和△DAF中,
,
∴△DCE≌△DAF(SAS),
∴DE=DF
【解析】根據(jù)正方形的性質(zhì)可得AD=CD,∠C=∠DAF=90°,然后利用“邊角邊”證明△DCE和△DAF全等,再根據(jù)全等三角形對(duì)應(yīng)邊相等證明即可.
【考點(diǎn)精析】關(guān)于本題考查的正方形的性質(zhì),需要了解正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠A=36°,AB=AC,AB的垂直平分線OD交AB于點(diǎn)O,交AC于點(diǎn)D,連接BD.下列結(jié)論錯(cuò)誤的是( )
A. ∠C=2∠A B. BD平分∠ABC C. S△BCD=S△BOD D. 點(diǎn)D為線段AC的黃金分割點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
(1)解方程:
(2)解不等式:2(x﹣6)+4≤3x﹣5,并將它的解集在數(shù)軸上表示出來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖(1),AB∥CD,探究∠BED與∠B+∠D的關(guān)系;
(2)如圖(2),AB∥CD,類比上述方法,試探究∠E+∠G與∠B+∠F+∠D的關(guān)系,并寫出推理過(guò)程;
(3)如圖(3),AB∥CD,請(qǐng)直接寫出你能得到的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y= x﹣b與y= x﹣1的圖象之間的距離等于3,則b的值為( )
A.﹣2或4
B.2或﹣4
C.4或﹣6
D.﹣4或6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知ABCD的三個(gè)頂點(diǎn)A(n,0)、B(m,0)、D(0,2n)(m>n>0),作ABCD關(guān)于直線AD的對(duì)稱圖形AB1C1D
(1)若m=3,試求四邊形CC1B1B面積S的最大值;
(2)若點(diǎn)B1恰好落在y軸上,試求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,E在BA的延長(zhǎng)線上,AD平分∠CAE.
(1)求證:AD∥BC;
(2)過(guò)點(diǎn)C作CG⊥AD于點(diǎn)F,交AE于點(diǎn)G,若AF=4,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把直角三角板的直角頂點(diǎn)O放在破損玻璃鏡的圓周上,兩直角邊與圓弧分別交于點(diǎn)M、N,量得OM=8cm,ON=6cm,則該圓玻璃鏡的半徑是( )
A. cm
B.5cm
C.6cm
D.10cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com