【題目】如圖,EABCDBC邊的中點,BDAE相交于F,則ABF與四邊形ECDF的面積之比等于_____

【答案】

【解析】

ABF△ABE等高,先判斷出,進而算出,△ABF

△ AFD等高,得,由,即可解出.

解:∵四邊形ABCD為平行四邊形,

ADBCADBC,

又∵EABCDBC邊的中點,

,

∵△ABE和△ABF同高,

,

SABESABF,

設(shè)ABCD中,BC邊上的高為h,

SABE×BE×hSABCDBC×hBE×h,

SABCD4SABESABF6SABF

∵△ABF與△ADF等高,

,

SADF2SABF,

S四邊形ECDFSABCDSABESADFSABF,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中(如圖),已知經(jīng)過點A(﹣3,0)的拋物線yax2+2ax3y軸交于點C,點B與點A關(guān)于該拋物線的對稱軸對稱,D為該拋物線的頂點.

1)直接寫出該拋物線的對稱軸以及點B的坐標(biāo)、點C的坐標(biāo)、點D的坐標(biāo);

2)聯(lián)結(jié)AD、DC、CB,求四邊形ABCD的面積;

3)聯(lián)結(jié)AC.如果點E在該拋物線上,過點Ex軸的垂線,垂足為H,線段EH交線段AC于點F.當(dāng)EF2FH時,求點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠ACB90°,AC15,sinBAC.點D在邊AB上(不與點A、B重合),以AD為半徑的⊙A與射線AC相交于點E,射線DE與射線BC相交于點F,射線AF與⊙A交于點G

1)如圖,設(shè)ADx,用x的代數(shù)式表示DE的長;

2)如果點E的中點,求∠DFA的余切值;

3)如果△AFD為直角三角形,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 經(jīng)過點,與軸相交于兩點,

1)拋物線的函數(shù)表達式;

2)點在拋物線的對稱軸上,且位于軸的上方,將沿沿直線翻折得到,若點恰好落在拋物線的對稱軸上,求點和點的坐標(biāo);

3)設(shè)是拋物線上位于對稱軸右側(cè)的一點,點在拋物線的對稱軸上,當(dāng)為等邊三角形時,求直線的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,過點C作CE∥AD交△ABC的外接圓O于點E,連接AE.

(1)求證:四邊形AECD為平行四邊形;

(2)連接CO,求證:CO平分∠BCE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】E-learning即為在線學(xué)習(xí),是一種新型的學(xué)習(xí)方式.某網(wǎng)站提供了A、B兩種在線學(xué)習(xí)的收費方式.A種:在線學(xué)習(xí)10小時(包括10小時)以內(nèi),收取費用5元,超過10小時時,在收取5元的基礎(chǔ)上,超過部分每小時收費0.6元(不足1小時按1小時計);B種:每月的收費金額(元)與在線學(xué)習(xí)時間是(時)之間的函數(shù)關(guān)系如圖所示.

1)按照B種方式收費,當(dāng)時,求關(guān)于的函數(shù)關(guān)系式.

2)如果小明三月份在這個網(wǎng)站在線學(xué)習(xí),他按照A種方式支付了20元,那么在線學(xué)習(xí)的時間最多是多少小時?如果該月他按照B 種方式付費,那么他需要多付多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,骰子有六個面并分別標(biāo)有數(shù)1,2,3,45,6,如圖2,正六邊形頂點處各有一個圈,跳圈游戲的規(guī)則為:游戲者擲一次骰子,骰子向上的一面上的數(shù)字是幾,就沿正六邊形的邊順時針方向連續(xù)跳幾個邊長.

如:若從圈起跳,第一次擲得3,就順時針連續(xù)跳3個邊長,落到圈;若第二次擲得2,就從開始順時針連續(xù)跳2個邊長,落到圈;……設(shè)游戲者從圈起跳.

1)小明隨機擲一次骰子,求落回到圈的概率;

2)小亮隨機擲兩次骰子,用列表法或畫樹狀圖法求最后落回到圈的概率,并指出他與小明落回到圈的可能性一樣嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程(2m+1x2+4mx+2m30有兩個不相等的實數(shù)根.

1)求m的取值范圍;

2)是否存在實數(shù)m,使方程的兩個實數(shù)根的倒數(shù)之和等于﹣1?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,AC切⊙O于點A,連結(jié)BCO于點D,E是⊙O上一點,且與點DAB異側(cè),連結(jié)DE

1)求證:∠C=∠BED

2)若∠C50°,AB2,則的長為(結(jié)果保留π

查看答案和解析>>

同步練習(xí)冊答案