年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:022
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平行四邊形ABCD中,AB=5,BC=10,F為AD的中點(diǎn),CE⊥AB于E,設(shè)∠ABC=α(60°≤α<90°).
(1)當(dāng)α=60°時(shí),求CE的長(zhǎng);
(2)當(dāng)60°<α<90°時(shí),
①是否存在正整數(shù)k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
②連接CF,當(dāng)CE2-CF2取最大值時(shí),求tan∠DCF的值.
分析 (1)利用60°角的正弦值列式計(jì)算即可得解;
(2)①連接CF并延長(zhǎng)交BA的延長(zhǎng)線于點(diǎn)G,利用“角邊角”證明△AFG和△CFD全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得CF=GF,AG=CD,再利用直角三角形斜邊上的中線等于斜邊的一半可得EF=GF,再根據(jù)AB、BC的長(zhǎng)度可得AG=AF,然后利用等邊對(duì)等角的性質(zhì)可得∠AEF=∠G=∠AFG,根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠EFC=2∠G,然后推出∠EFD=3∠AEF,從而得解;
②設(shè)BE=x,在Rt△BCE中,利用勾股定理表示出CE2,表示出EG的長(zhǎng)度,在Rt△CEG中,利用勾股定理表示出CG2,從而得到CF2,然后相減并整理,再根據(jù)二次函數(shù)的最值問(wèn)題解答.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com