【題目】如圖,在ABC中,AB=AC,以AB為直徑的OBC于點(diǎn)D,點(diǎn)EAC的延長線上,且CBE=BAC

(1)求證:BEO的切線;

(2)若ABC=65°,AB=6,求劣弧AD的長.

【答案】(1)證明見解析(2)

【解析】

(1)連接,根據(jù)圓周角的性質(zhì)求得。根據(jù)等腰三角形的性質(zhì)三效合一的性質(zhì)得出,進(jìn)而根據(jù)已知條件即可證明,從而證明的切線;

(2)連接,等腰三角形的性質(zhì)和三角形外角的性質(zhì),求出的度數(shù),進(jìn)而根據(jù)弧長公式即可求出.

(1)證明:如圖,連接AD.

AB為直徑,

∴∠ADB=90°,即ADBC.

AB=AC,

∴∠BAD=∠CAD=BAC.

∵∠CBE=BAC,

∴∠CBE=∠BAD.

∵∠BAD+∠ABD=90°,

∴∠ABE=∠ABD+∠CBE=90°.

AB為⊙O直徑,

BE是⊙O的切線.

(2)解:如圖,連接OD.

∵∠ABC=65°,

∴∠AOD=2∠ABC=2×65°=130°.

AB=6,

∴圓的半徑為3.

∴劣弧AD的長為=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)y=kx2+(3k+2)x+1,對(duì)于任意負(fù)實(shí)數(shù)k,當(dāng)x<m時(shí),y隨x的增大而增大,則m的最大整數(shù)值為( 。

A. 2 B. ﹣2 C. ﹣1 D. 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知二次函數(shù)y=mx2+3mx﹣m的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),頂點(diǎn)D和點(diǎn)B關(guān)于過點(diǎn)A的直線l:y=﹣x﹣對(duì)稱.

(1)求A、B兩點(diǎn)的坐標(biāo)及二次函數(shù)解析式;

(2)如圖2,作直線AD,過點(diǎn)BAD的平行線交直線1于點(diǎn)E,若點(diǎn)P是直線AD上的一動(dòng)點(diǎn),點(diǎn)Q是直線AE上的一動(dòng)點(diǎn).連接DQ、QP、PE,試求DQ+QP+PE的最小值;若不存在,請(qǐng)說明理由:

(3)將二次函數(shù)圖象向右平移個(gè)單位,再向上平移3個(gè)單位,平移后的二次函數(shù)圖象上存在一點(diǎn)M,其橫坐標(biāo)為3,在y軸上是否存在點(diǎn)F,使得∠MAF=45°?若存在,請(qǐng)求出點(diǎn)F坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形 ABCD,A=90°,AB=3m,BC=12mCD=13m,DA=4m

(1)求證:BDCB;

(2)求四邊形 ABCD 的面積;

(3)如圖 2,以 A 為坐標(biāo)原點(diǎn),以 AB、AD所在直線為 x軸、y軸建立直角坐標(biāo)系,

點(diǎn)Py軸上,若 SPBD=S四邊形ABCD, P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校創(chuàng)客小組進(jìn)行機(jī)器人跑步大賽,機(jī)器人小和小從同一地點(diǎn)同時(shí)出發(fā),小在跑到1分鐘的時(shí)候監(jiān)控到程序有問題,隨即開始進(jìn)行遠(yuǎn)程調(diào)試,到3分鐘的時(shí)候調(diào)試完畢并加速前進(jìn),最終率先到達(dá)終點(diǎn),測(cè)控小組記錄的兩個(gè)機(jī)器人行進(jìn)的路程與時(shí)間的關(guān)系如圖所示,則以下結(jié)論正確的有_________ (填序號(hào)).

①兩個(gè)機(jī)器人第一次相遇時(shí)間是在第2分鐘;

②小每分鐘跑50米;

③賽程總長200米;

④小到達(dá)終點(diǎn)的時(shí)候小距離終點(diǎn)還有20米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABE≌△ACD,且AB=AC.

(1)說明△ABE經(jīng)過怎樣的變換后可與△ACD重合.

(2)∠BAD與∠CAE有何關(guān)系?請(qǐng)說明理由.

(3)BD與CE相等嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】制作一種產(chǎn)品,需先將材料加熱達(dá)到60 ℃后,再進(jìn)行操作.設(shè)該材料溫度為y),從加熱開始計(jì)算的時(shí)間為xmin).據(jù)了解,當(dāng)該材料加熱時(shí),溫度y與時(shí)間x成一次函數(shù)關(guān)系;停止加熱進(jìn)行操作時(shí),溫度y與時(shí)間x成反比例關(guān)系(如圖).已知該材料在操作加熱前的溫度為15 ℃,加熱5分鐘后溫度達(dá)到60 ℃

1)分別求出將材料加熱和停止加熱進(jìn)行操作時(shí),yx的函數(shù)關(guān)系式;

2)根據(jù)工藝要求,當(dāng)材料的溫度低于15 ℃時(shí),須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90,點(diǎn)D、E分別是邊AB、AC的中點(diǎn),延長DEF,使得AF//CD,連接BF、CF。求證:四邊形AFCD是菱形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與軸,軸分別交于,兩點(diǎn),在軸上有一點(diǎn),動(dòng)點(diǎn)點(diǎn)以每秒2個(gè)單位長度的速度向左移動(dòng),

1)求直線的表達(dá)式;

2)求的面積與移動(dòng)時(shí)間之間的函數(shù)關(guān)系式;

3)當(dāng)為何值時(shí),,求出此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案