【題目】下列命題的逆命題成立的是( 。
A.全等三角形的對應(yīng)角相等
B.若三角形的三邊滿足,則該三角形是直角三角形
C.對頂角相等
D.同位角互補,兩直線平行
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2015年1月,市教育局在全市中小學(xué)中選取了63所學(xué)校從學(xué)生的思想品德、學(xué)業(yè)水平、學(xué)業(yè)負(fù)擔(dān)、身心發(fā)展和興趣特長五個維度進(jìn)行了綜合評價.評價小組在選取的某中學(xué)七年級全體學(xué)生中隨機(jī)抽取了若干名學(xué)生進(jìn)行問卷調(diào)查,了解他們每天在課外用于學(xué)習(xí)的時間,并繪制成如下不完整的統(tǒng)計圖. 根據(jù)上述信息,解答下列問題:
(1)本次抽取的學(xué)生人數(shù)是 ______ ;扇形統(tǒng)計圖中的圓心角α等于 ______ ;補全統(tǒng)計直方圖;
(2)被抽取的學(xué)生還要進(jìn)行一次50米跑測試,每5人一組進(jìn)行.在隨機(jī)分組時,小紅、小花兩名女生被分到同一個小組,請用列表法或畫樹狀圖求出她倆在抽道次時抽在相鄰兩道的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A的坐標(biāo)為(0,1),點B是x軸正半軸上的一動點,以AB為邊作等腰Rt△ABC,使∠BAC=90°,設(shè)點B的橫坐標(biāo)為x,設(shè)點C的縱坐標(biāo)為y,能表示y與x的函數(shù)關(guān)系的圖象大致是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的二次函數(shù)y=x2+bx+c經(jīng)過點(﹣1,0)和(2,6).
(1)求b和c的值.
(2)若點A(n,y1),B(n+1,y2),C(n+2,y3)都在這個二次函數(shù)的圖象上,問是否存在整數(shù)n,使?若存在,請求出n;若不存在,請說明理由.
(3)若點P是二次函數(shù)圖象在y軸左側(cè)部分上的一個動點,將直線y=﹣2x沿y軸向下平移,分別交x軸、y軸于C、D兩點,若以CD為直角邊的△PCD與△OCD相似,請求出所有符合條件點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來霧霾天氣給人們的生活帶來很大影響,空氣質(zhì)量問題倍受人們關(guān)注.某單位計劃在室內(nèi)安裝空氣凈化裝置,需購進(jìn)A、B兩種設(shè)備.每臺B種設(shè)備價格比每臺A種設(shè)備價格多0.7萬元,花3萬元購買A種設(shè)備和花7.2萬元購買B種設(shè)備的數(shù)量相同.
(1)求A種、B種設(shè)備每臺各多少萬元?
(2)根據(jù)單位實際情況,需購進(jìn)A、B兩種設(shè)備共20臺,總費用不高于15萬元,求A種設(shè)備至少要購買多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=36°,△ABC的外角∠CBD的平分線BE交AC的延長線于點E.
(1)求∠CBE的度數(shù);
(2)點F是AE延長線上一點,過點F作∠AFD=27°,交AB的延長線于點D.求證:BE∥DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點D,DE⊥AC,垂足為點E.
(1)求證:點D是AB的中點;
(2)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)若⊙O的直徑為18,cosB=,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(14分)如圖,拋物線與x軸交于A,B兩點,與y軸交于點C,點D為拋物線的頂點,請解決下列問題.
(1)填空:點C的坐標(biāo)為( , ),點D的坐標(biāo)為( , );
(2)設(shè)點P的坐標(biāo)為(a,0),當(dāng)最大時,求a的值并在圖中標(biāo)出點P的位置;
(3)在(2)的條件下,將△BCP沿x軸的正方向平移得到△B′C′P′,設(shè)點C對應(yīng)點C′的橫坐標(biāo)為t(其中0<t<6),在運動過程中△B′C′P′與△BCD重疊部分的面積為S,求S與t之間的關(guān)系式,并直接寫出當(dāng)t為何值時S最大,最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=45°,以AB為直徑的圓分別交BC,AC于D,E兩點,AD交BE于F點,現(xiàn)給出下列命題:①DE+BD=AD;②△ABE與△ABD的面積差為ED2 , 則( 。
A.①是假命題,②是真命題 B.①是真命題,②是假命題
C.①是假命題,②是假命題 D.①是真命題,②是真命題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com