【題目】如圖,為的切線,直線交于兩點(diǎn),連接,若,,則的度數(shù)為________________.
【答案】40°
【解析】
連接AO并延長交于點(diǎn)D,連接BD,AB,先證∠ACB=∠PAB,設(shè)∠ACB=x,根據(jù)外角列出等式解出x即可.
連接AO并延長交于點(diǎn)D,連接BD,AB,
∵AD為直徑,
∴∠ABD=90°,
∴∠BAD=∠ADB=90°,
∵PA為切線,
∴∠PAO=90°,
∴∠PAB+∠BAD=90°,
∴∠PAB=∠ADB,
∵∠ADB和∠ACB所對的弧都是,
∴∠ADB=∠ACB,
∴∠ACB=∠PAB,
設(shè)∠ACB=x,
∴∠PAB=x,
∵AC=BC,
∴∠ABC=,
∵∠ABC=∠P+∠PAB,∠P=30°,
∴,
解得:x=40,
∴∠ACB=40°,
故答案為40°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是ABCD的AD邊上一點(diǎn),CE與BA的延長線交于點(diǎn)F,則下列比例式:①;②;③;④,其中一定成立的是( )
A.①③④B.①②③C.①②④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生的閱讀能力,我市某校開展了“讀好書,助成長”的活動,并計劃購置一批圖書,購書前,對學(xué)生喜歡閱讀的圖書類型進(jìn)行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計圖,如圖所示,請根據(jù)統(tǒng)計圖回答下列問題:
(1)本次調(diào)查共抽取了 名學(xué)生,兩幅統(tǒng)計圖中的m= ,n= .
(2)已知該校共有3600名學(xué)生,請你估計該校喜歡閱讀“A”類圖書的學(xué)生約有多少人?
(3)學(xué)校將舉辦讀書知識競賽,九年級1班要在本班3名優(yōu)勝者(2男1女)中隨機(jī)選送2人參賽,請用列表或畫樹狀圖的方法求被選送的兩名參賽者為一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家支持大學(xué)生創(chuàng)新辦實(shí)業(yè),提供小額無息貸款,學(xué)生王亮享受國家政策貸款36000元用于代理某品牌服裝銷售,已知該店代理的品牌服裝的進(jìn)價為每件40元,該品牌服裝日銷售量y(件)與銷售價x(元/件)之間的關(guān)系可用圖中的一條線段(實(shí)線)來表示.該店應(yīng)支付員工的工資為每人每天82元,每天還應(yīng)支付其它費(fèi)用為106元(不包含貸款).
(1)求日銷售量y(件)與銷售價x(元/件)之間的函數(shù)關(guān)系式;
(2)若該店暫不考慮償還貸款,當(dāng)某天的銷售價為48元/件時,當(dāng)天正好收支平衡(銷售額-成本=支出),求該店員工的人數(shù);
(3)若該店只有2名員工,則該店至少需要多少天能還清所有貸款?此時每件服裝的價格應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點(diǎn),點(diǎn)C是⊙O外一點(diǎn)且∠DBC=∠A,連接OE延長與圓相交于點(diǎn)F,與BC相交于點(diǎn)C.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為6,BC=8,求弦BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,點(diǎn)是上一點(diǎn),,于,連接.
(1)求證:;
(2)在不添加任何輔助線的情況下,請直接寫出圖中四對線段,使每對中較長線段與較短線段長度的差等于線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,中,是邊上一點(diǎn),是的中點(diǎn),過點(diǎn)作的平行線交的延長線于,且,連接.
(1)求證:是的中點(diǎn);
(2)若,試判斷四邊形的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)O在對角線AC上,以OA的長為半徑的圓O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE.
(1)判斷直線CE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若tan∠ACB=,BC=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=5,AB=8,點(diǎn)E為射線DC上一個動點(diǎn),把△ADE沿直線AE折疊,當(dāng)點(diǎn)D的對應(yīng)點(diǎn)F剛好落在線段AB的垂直平分線上時,則DE的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com