【題目】甲、乙兩所學(xué)校共82人參加文藝匯演(其中甲校人數(shù)多于乙校人數(shù),且甲校人數(shù)小于80人),如果兩所學(xué)校分別購買服裝,共付款6060.

購買服裝套數(shù)

1~40

41~80

81套及81套以上

每套服裝價格

80

70

60

(1)如果甲、乙兩所學(xué)校聯(lián)合起來購買服裝,那么比各自購買服裝一共可以節(jié)約多少錢?

(2)甲、乙兩所學(xué)校各有多少學(xué)生參加演出?

(3)如果乙學(xué)校單獨購買時,服裝廠每件服裝獲利60%,丙學(xué)校購買的服裝比乙多15套,那么服裝廠賣給丙學(xué)校服裝時共獲利多少元?

【答案】(1)一共可以節(jié)約1140;(2):甲學(xué)校有50名學(xué)生,乙學(xué)校有32名學(xué)生參加演出;(3)共獲利940.

【解析】

(1)若甲、乙兩校聯(lián)合起來購買服裝,計算出總價,即可求得比各自購買服裝共可以節(jié)省多少錢;

2)根據(jù)題意判斷出41<甲校的學(xué)生<80,乙校的學(xué)生<41,設(shè)甲校學(xué)生x人,則乙校學(xué)生(82-x)人;

根據(jù)兩所學(xué)校單獨購買服裝,可列出方程,解方程即可得到答案.

(3)求出每件服裝的成本,即可求出獲利.

:(1)由題意得,82×60=4920,

6060-4920=1140,

答:如果甲、乙兩所學(xué)校聯(lián)合起來購買服裝,那么比各自購買服裝一共可以節(jié)約1140.

(2)設(shè)乙學(xué)校有名學(xué)生

因為甲乙兩所學(xué)校共82人參加匯演,甲校人數(shù)多于乙校人數(shù),且甲校人數(shù)小于80

所以乙學(xué)校學(xué)生小于41人,甲學(xué)校學(xué)生大于41.

解得:

答:甲學(xué)校有50名學(xué)生,乙學(xué)校有32名學(xué)生參加演出.

(3)設(shè)每件服裝的成本為y

80=(1+60%)y

解得 y=50

32+15=47 47大于41

47×(70-50)=940 .

答:服裝廠賣給丙學(xué)校服裝時共獲利940.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某餐廳計劃購買12張餐桌和一批椅子(不少于12把),現(xiàn)從甲、乙兩商場了解到同一型號的餐桌報價都為每張200元,餐椅報價都為每把50元.甲商場規(guī)定:每購買一張餐桌贈送一把餐椅;乙商場規(guī)定:所有餐桌、餐椅均按報價的八五折銷售,那么,什么情況下到甲商場購買更優(yōu)惠.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AC為對角線,點E在AB邊上,EF⊥AC于點F,連接EC,AF=3,△EFC的周長為12,則EC的長為(
A.
B.3
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知購買1盆甲種花卉和3盆乙種花卉共需125元,購買3盆甲種花卉和2盆乙種花卉共需165元.
(1)求購買1盆甲種花卉和購買1盆乙種花卉各需多少元?
(2)某校為綠化校園決定購買甲乙兩種花卉共60盆,要求購買的甲種花卉盆數(shù)不少于乙種花卉的 ,請幫該校設(shè)計一種最省錢的購買方案,并計算此時購買這兩種花卉所需的費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線x軸交于點,直線x軸、y軸分別交于BC兩點,并與直線相交于點D,若

求點D的坐標(biāo);

求出四邊形AOCD的面積;

Ex軸上一點,且為等腰三角形,寫出點E的坐標(biāo)直接寫出答案

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為4的菱形ABCD中,∠A=60°,M是AD邊的中點,點N是AB邊上一動點,將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,則線段A′C長度的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線AB與x、y軸分別交于點A(4,0)、B(0, )兩點,∠BAO的角平分線交y軸于點D,點C為直線AB上一點以AC為直徑的⊙G經(jīng)過點D,且與x軸交于另一點E.
(1)求證:y軸是⊙G的切線.
(2)求出⊙G的半徑;
(3)連結(jié)EC,求△ACE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一張紙片的形狀為直角三角形,其中,,沿直線AD折疊該紙片,使直角邊AC與斜邊上的AE重合,則CD的長為______cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O為矩形ABCD的對稱中心,AB=10cm,BC=12cm,點E、F、G分別從A、B、C三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點F的運動速度為3cm/s,點G的運動速度為1.5cm/s,當(dāng)點F到達(dá)點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,△EBF關(guān)于直線EF的對稱圖形是△EB′F.設(shè)點E、F、G運動的時間為t(單位:s).

(1)當(dāng)t=s時,四邊形EBFB′為正方形;
(2)若以點E、B、F為頂點的三角形與以點F,C,G為頂點的三角形相似,求t的值;
(3)是否存在實數(shù)t,使得點B′與點O重合?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案