【題目】如圖所示,在⊙O中,OA=AB,OC⊥AB,則下列結(jié)論正確的是①AB的長等于圓內(nèi)接正六邊形的邊長 ②弦AC的長等于圓內(nèi)接正十二邊形的邊長 ③弧弧④∠BAC=30°
A.①②④B.①③④C.②③④D.①②③
科目:初中數(shù)學 來源: 題型:
【題目】某藥品生產(chǎn)基地共有5條生產(chǎn)線,每條生產(chǎn)線每月生產(chǎn)藥品20萬盒,該基地打算從第一個月開始到第五個月結(jié)束,對每條生產(chǎn)線進行升級改造.改造時,每個月只升級改造一條生產(chǎn)線,這條生產(chǎn)線當月停產(chǎn),并于下個月投入生產(chǎn),其他生產(chǎn)線則正常生產(chǎn).經(jīng)調(diào)查,每條生產(chǎn)線升級改造后,每月的產(chǎn)量會比原來提高20%.
(1)根據(jù)題意,完成下面問題:
①把下表補充完整(直接寫在橫線上):
月數(shù) | 第1個月 | 第2個月 | 第3個月 | 第4個月 | 第5個月 | 第6個月 | … |
產(chǎn)量/萬盒 |
|
|
| 92 | … | … | … |
②從第1個月進行升級改造后,第 個月的產(chǎn)量開始超過未升級改造時的產(chǎn)量;
(2)若該基地第x個月(1≤x≤5,且x是整數(shù))的產(chǎn)量為y萬盒,求y關(guān)于x的函數(shù)關(guān)系式;
(3)已知每條生產(chǎn)線的升級改造費是30萬元,每盒藥品可獲利3元.設(shè)從第1個月開始升級改造后,生產(chǎn)藥品所獲總利潤為W1萬元;同時期內(nèi),不升級改造所獲總利潤為W2萬元設(shè)至少到第n個月(n為正整數(shù))時,W1大于W2,求n的值.(利潤=獲利﹣改造費)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關(guān)系?請說明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關(guān)系式;如果不變化,請求出定值.
②請直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,BC=4,CD=2,O為AD的中點,以AD為直徑的弧DE與BC相切于點E,連接BD,則陰影部分的面積為( )
A.πB.C.π+2D.+4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】超速行駛被稱為“馬路第一殺手”,為了讓駕駛員自覺遵守交通規(guī)則,市公路檢測中在一事故多發(fā)地段安裝了一個測速儀器,如圖所示,已知檢測點A設(shè)在距離公路BC20米處,∠B=45°,∠C=30°,現(xiàn)測得一輛汽車從B處行駛到C處所用時間為2.7秒.
(1)求B,C之間的距離(結(jié)果保留根號);
(2)如果此地限速為80km/h,那么這輛汽車是否超速?請說明理由.(參考數(shù)據(jù):1.7,≈1.4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】
九年級數(shù)學興趣小組組織了以“等積變形”為主題的課題研究.
第一學習小組發(fā)現(xiàn):如圖(1),點A、點B在直線l1上,點C、點D在直線l2上,若l1∥l2,則S△ABC=S△ABD;反之亦成立.
第二學習小組發(fā)現(xiàn):如圖(2),點P是反比例函數(shù)上任意一點,過點P作x軸、y軸的垂線,垂足為M、N,則矩形OMPN的面積為定值|k|.
請利用上述結(jié)論解決下列問題:
(1)如圖(3),四邊形ABCD、與四邊形CEFG都是正方形點E在CD上,正方形ABCD邊長為2,則=_________.
(2)如圖(4),點P、Q在反比例函數(shù)圖象上,PQ過點O,過P作y軸的平行線交x軸于點H,過Q作x軸的平行線交PH于點G,若=8,則=_________,k=_________.
(3)如圖(5)點P、Q是第一象限的點,且在反比例函數(shù)圖象上,過點P作x軸垂線,過點Q作y軸垂線,垂足分別是M、N,試判斷直線PQ與直線MN的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在菱形ABCD中,AB=,tan∠ABC=2,點E從點D出發(fā),以每秒1個單位長度的速度沿著射線DA的方向勻速運動,設(shè)運動時間為t(秒),將線段CE繞點C順時針旋轉(zhuǎn)一個角α(α=∠BCD),得到對應(yīng)線段CF.
(1)求證:BE=DF;
(2)當t= 秒時,DF的長度有最小值,最小值等于 ;
(3)如圖2,連接BD、EF、BD交EC、EF于點P、Q,當t為何值時,△EPQ是直角三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以的邊上一點為圓心的圓,經(jīng)過、兩點,且與邊交于點,為的下半圓弧的中點,連接交于,若.
(1)求證:是的切線;
(2)若,,求的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com