【題目】如圖,小方格都是邊長為1的正方形
(1)求的長度.
(2)用勾股定理的知識證明:.
【答案】(1)AB= ,BC= ;(2)見解析.
【解析】
(1)如圖1,分別在Rt△AEB和RtBFC中分別由勾股定理可求得AB和BC的長;
(2)如圖2,連接AC,在Rt△ACG中由勾股定理可求得AC,則可得到AB2+BC2=AC2,可證得△ABC為直角三角形,即可得結(jié)論.
(1) 解:如圖1,
在Rt△ABE中,AE=3,BE=2,
∴AB= = ,
在Rt△BCF中,BF=3,CF=2,
∴BC= = ;
(2)證明:如圖2,連接AC,
在Rt△ACG中,AG=5,CG=1,
∴AC= ,
結(jié)合(1)可得 =
∴△ABC是以AC為斜邊的直角三角形,
∴∠ABC=90°.
故答案為:(1)AB= ,BC= ;(2)見解析.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,Rt△ABC的三個頂點A(-2,2),B(0,5),C(0,2).
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到△A1B1C,請畫出△A1B1C的圖形.
(2)平移△ABC,使點A的對應點A2坐標為(-2,-6),請畫出平移后對應的△A2B2C2的圖形.
(3)若將△A1B1C繞某一點旋轉(zhuǎn)可得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,∠B=30°,AB≠BC ,將△ABC沿AC翻折至△AB′C ,連結(jié)B ′D. 若 ,∠AB ′D=75°,則BC= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應值如表
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列結(jié)論:
①ac<0; ②當x>1時,y的值隨x值的增大而減小;
③當 時, ; ④3是方程ax2+(b﹣1)x+c=0的一個根.
其中正確的結(jié)論是(填正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校準備租用一批汽車,現(xiàn)有甲、乙兩種大客車,甲種客車每輛載客量45人,乙種客車每輛載客量30人,已知1輛甲種客車和3輛乙種客車共需租金1240元,3輛甲種客車和2輛乙種客車共需租金1760元.
(1)求1輛甲種客車和1輛乙種客車的租金分別是多少元?
(2)學校計劃租用甲、乙兩種客車共8輛,送330名師生集體外出活動,最節(jié)省的租車費用是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC中,BD⊥AC于點D,AD=3.5cm,點P、Q分別為AB、AD上的兩個定點且BP=AQ=2cm,若在BD上有一動點E使PE+QE最短,則PE+QE的最小值為_____cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y= 的圖象交于A(2,m),B(-3,﹣2)兩點.
(1)求m的值;
(2)根據(jù)所給條件,請直接寫出不等式k1x+b> 的解集;
(3)若P(p,y1),Q(﹣2,y2)是函數(shù)y= 圖象上的兩點, 且y1>y2 , 求實數(shù)p的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,M、N分別是AD、BC的中點,P、Q分別是BM、DN的中點.
(1)求證:BM∥DN;
(2)求證:四邊形MPNQ是菱形;
(3)矩形ABCD的邊長AB與AD滿足什么數(shù)量關(guān)系時四邊形MPNQ為正方形,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com