分析 連接MN,由于M,N分別是ADBC上的中點,所以MN∥AB∥CD,而四邊形ABCD是長方形,所以四邊形MNCD是矩形,再過O作OE⊥MN,同樣也垂直于CD,再利用PQ=$\frac{1}{4}$DC,可得相似比,那么可求出OE,OF,以及MN,CD的長,再利用三角形的面積公式可求出△MNO和△PQO的面積,用矩形MNCD的面積減去△MNO的面積減去△PQO的面積,即可求陰影部分面積.
解答 解:連接MN,過O作OE⊥MN,交MN于E,交CD于F,
在矩形ABCD中,AD∥BC,AD=BC,
∵M(jìn)、N分別是邊AD、BC的中點,
∴DM=CN,
∴四邊形MNCD是平行四邊形,
∴MN∥CD,
∴△OMN∽△PQO,
相似比是MN:PQ=4:1,
∴OE:OF=EF:GH=4:1,
又∵EF=$\frac{1}{2}$•BC=10,
∴OE=8,OF=2,
∴S△MNO=$\frac{1}{2}$×16×8=64,
∴S△PQO=$\frac{1}{2}$×4×2=4,S矩形MNCD=16×10=160,
∴S陰影=160-64-4=92.
故答案為:92.
點評 本題考查了矩形的性質(zhì),相似三角形的性質(zhì)和判定,三角形得到面積的應(yīng)用,關(guān)鍵是能把求不規(guī)則圖形的面積轉(zhuǎn)化成求規(guī)則圖形的面積.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x≥0 | B. | x≥-$\frac{1}{2}$ | C. | x>-$\frac{1}{2}$ | D. | x≤-$\frac{1}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | m+n=0 | |
B. | $\frac{m}{n}=1$ | |
C. | |m|=|n| | |
D. | 數(shù)軸上,表示這兩個數(shù)的點到原點的距離相等 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com