【題目】如圖,大樓底右側有一障礙物,在障礙物的旁邊有一棟小樓DE,在小樓的頂端D處測得障礙物邊緣點C的俯角為,測得大樓頂端A的仰角為點B,C,E在同一水平直線上已知,,則障礙物B,C兩點間的距離為______結果保留根號
科目:初中數學 來源: 題型:
【題目】如圖1,2,3,根據圖中數據完成填空,再按要求答題:sin2A1+sin2B1=____;sin2A2+sin2B2=____;sin2A3+sin2B3=____.
(1)觀察上述等式,猜想:在Rt△ABC中,∠C=90°,都有sin2A+sin2B=____;
(2)如圖4,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的對邊分別是a,b,c,利用三角函數的定義和勾股定理證明你的猜想;
(3)已知∠A+∠B=90°,且sinA=,求sinB的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,□ABCD的對角線交于點O,點E在邊BC的延長線上,且OE=OB,連接DE.
(1)求證:△BDE是直角三角形;
(2)如果OE⊥CD,試判斷△BDE與△DCE是否相似,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數y=kx+b的圖象與反比例函數的圖象交于A,B兩點,且點A的橫坐標和點B的縱坐標都是﹣2,
求:(1)一次函數的解析式;
(2)△AOB的面積;
(3)直接寫出一次函數的函數值大于反比例函數的函數值時x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學為了提高學生的消防意識,舉行了消防知識競賽,所有參賽學生分別設有一、二、三等獎和紀念獎,獲獎情況已繪制成如圖所示的兩幅不完整的統計圖,根據圖中所經信息解答下列問題:
(1)這次知識競賽共有多少名學生?
(2)“二等獎”對應的扇形圓心角度數,并將條形統計圖補充完整;
(3)小華參加了此次的知識競賽,請你幫他求出獲得“一等獎或二等獎”的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P是反比例函數圖象上的一動點,軸于點A,在直線上截取點B在第一象限,點C的坐標為,連接AC、BC、OC.
填空:______,______;
求證:∽;
隨著點P的運動,的大小是否會發(fā)生變化?若變化,請說明理由,若不變,則求出它的大。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,半圓O的直徑AB=20,弦CD∥AB,動點M在半徑OD上,射線BM與弦CD相交于點E(點E與點C、D不重合),設OM=m.
(1)求DE的長(用含m的代數式表示);
(2)令弦CD所對的圓心角為α,且sin.
①若△DEM的面積為S,求S關于m的函數關系式,并求出m的取值范圍;
②若動點N在CD上,且CN=OM,射線BM與射線ON相交于點F,當∠OMF=90° 時,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中,直線y=﹣x+與x軸交于點A,與y=﹣x相交于點B,點C是線段OB上一動點,連接AC,在AC上方取點D,使得cos∠CAD=,且=,連接OD,當點C從點O運動到點B時,線段OD掃過的面積為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰Rt△ABC中,BA=BC,∠ABC=90°,點D在AC上,將△ABD繞點B沿順時針方向旋轉90°后,得到△CBE.
(1)求∠DCE的度數;
(2)若AB=4,CD=3AD,求DE的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com