【題目】如圖,半圓O的直徑AB=20,弦CD∥AB,動(dòng)點(diǎn)M在半徑OD上,射線BM與弦CD相交于點(diǎn)E(點(diǎn)E與點(diǎn)C、D不重合),設(shè)OM=m.
(1)求DE的長(用含m的代數(shù)式表示);
(2)令弦CD所對(duì)的圓心角為α,且sin.
①若△DEM的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求出m的取值范圍;
②若動(dòng)點(diǎn)N在CD上,且CN=OM,射線BM與射線ON相交于點(diǎn)F,當(dāng)∠OMF=90° 時(shí),求DE的長.
【答案】(1)DE=;(2)①S=,(<m<10),②DE=.
【解析】
(1)由CD∥AB知△DEM∽△OBM,可得,據(jù)此可得;
(2)①連接OC、作OP⊥CD、MQ⊥CD,由OC=OD、OP⊥CD知∠DOP=∠COD,據(jù)此可得sin∠DOP=sin∠DMQ=、sin∠ODP=,繼而由OM=m、OD=10得QM=DMsin∠ODP=(10﹣m),根據(jù)三角形的面積公式即可得;如圖2,先求得PD=8、CD=16,證△CDM∽△BOM得,求得OM=,據(jù)此可得m的取值范圍;
②如圖3,由BM=OBsin∠BOM=10×=6,可得OM=8,根據(jù)(1)所求結(jié)果可得答案.
(1)∵CD∥AB,
∴△DEM∽△OBM,
∴,即,
∴DE=;
(2)①如圖1,連接OC、作OP⊥CD于點(diǎn)P,作MQ⊥CD于點(diǎn)Q,
∵OC=OD、OP⊥CD,
∴∠DOP=∠COD,
∵sin=,
∴sin∠DOP=sin∠DMQ=,sin∠ODP=,
∵OM=m、OD=10,
∴DM=10﹣m,
∴QM=DMsin∠ODP=(10﹣m),
則S△DEM=DEMQ=××(10﹣m)=,
如圖2,
∵PD=ODsin∠DOP=10×=8,
∴CD=16,
∵CD∥AB,
∴△CDM∽△BOM,
∴,即,
解得:OM=,
∴<m<10,
∴S=,(<m<10).
②當(dāng)∠OMF=90°時(shí),如圖3,
則∠BMO=90°,
在Rt△BOM中,BM=OBsin∠BOM=10×=6,
則OM=8,
由(1)得DE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉?chǎng)購物的支付方式更加多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問題:
(1)這次活動(dòng)共調(diào)查了 人;在扇形統(tǒng)計(jì)圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.觀察此圖,支付方式的“眾數(shù)”是“ ”;
(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進(jìn)行支付,請(qǐng)用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+2與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,AB=4,矩形OBDC的邊CD=1,延長DC交拋物線于點(diǎn)E.
(1)求拋物線的解析式;
(2)如圖2,點(diǎn)P是直線EO上方拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作y軸的平行線交直線EO于點(diǎn)G,作PH⊥EO,垂足為H.設(shè)PH的長為l,點(diǎn)P的橫坐標(biāo)為m,求l與m的函數(shù)關(guān)系式(不必寫出m的取值范圍),并求出l的最大值;
(3)如果點(diǎn)N是拋物線對(duì)稱軸上的一點(diǎn),拋物線上是否存在點(diǎn)M,使得以M,A,C,N為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大樓底右側(cè)有一障礙物,在障礙物的旁邊有一棟小樓DE,在小樓的頂端D處測(cè)得障礙物邊緣點(diǎn)C的俯角為,測(cè)得大樓頂端A的仰角為點(diǎn)B,C,E在同一水平直線上已知,,則障礙物B,C兩點(diǎn)間的距離為______結(jié)果保留根號(hào)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年“五一”節(jié),小明外出爬山,他從山腳爬到山頂?shù)倪^程中,中途休息了一段時(shí)間.設(shè)他從山腳出發(fā)后所用的時(shí)間為t(分鐘),所走的路程為s(米),s與t之間的函數(shù)關(guān)系如圖所示,下列說法錯(cuò)誤的是( )
A.小明中途休息用了20分鐘
B.小明休息前爬山的平均速度為每分鐘70米
C.小明在上述過程中所走的路程為6600米
D.小明休息前爬山的平均速度大于休息后爬山的平均速度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣2,與x軸的一個(gè)交點(diǎn)在(﹣3,0)和(﹣4,0)之間,其部分圖象如圖所示,則下列結(jié)論:①4a﹣b=0;②c<0;③﹣3b+4c>0;④4a﹣2b≥at2+bt(t為實(shí)數(shù));⑤點(diǎn)(﹣,y1),(﹣,y2),(﹣,y3)是該拋物線上的點(diǎn),則y1<y2<y3,其中正確的結(jié)論有( 。
A. ②④ B. ①③④⑤ C. ①②③⑤ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,BC=4,以BC的中點(diǎn)O為圓心分別與AB,AC相切于D、E兩點(diǎn),則的長為( 。
A. B. C. D. π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,借助直角三角板可以找到一元二次方程的實(shí)數(shù)根,比如對(duì)于方程x2﹣5x+2=0,操作步驟是:第一步:根據(jù)方程系數(shù)特征,確定一對(duì)固定點(diǎn)A(0,1),B(5,2);第二步:在坐標(biāo)平面中移動(dòng)一個(gè)直角三角板,使一條直角邊恒過點(diǎn)A,另一條直角邊恒過點(diǎn)B;第三步:在移動(dòng)過程中,當(dāng)三角板的直角頂點(diǎn)落在x軸上點(diǎn)C處時(shí),點(diǎn)C的橫坐標(biāo)m即為該方程的一個(gè)實(shí)數(shù)根(如圖1);第四步:調(diào)整三角板直角頂點(diǎn)的位置,當(dāng)它落在x軸上另一點(diǎn)D處時(shí),點(diǎn)D的橫坐標(biāo)為n即為該方程的另一個(gè)實(shí)數(shù)根;(1)在圖2中,按照“第四步“的操作方法作出點(diǎn)D(請(qǐng)保留作出點(diǎn)D時(shí)直角三角板兩條直角邊的痕跡);(2)結(jié)合圖1,請(qǐng)證明“第三步”操作得到的m就是方程x2﹣5x+2=0的一個(gè)實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3,頂點(diǎn)為E,該拋物線與x軸交于A,B兩點(diǎn),與y軸交子點(diǎn)C,且OB=OC=3OA,直線y=﹣x+1與y軸交于點(diǎn)D.求∠DBC﹣∠CBE=_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com