【題目】如圖,在矩形ABCD中,E是AD上一點,PQ垂直平分BE,分別交AD、BE、BC于點P、O、Q,連接BP、EQ.
(1)求證:四邊形BPEQ是菱形;
(2)若AB=6,F為AB的中點,OF+OB=9,求PE的長.
【答案】(1)見解析;(2)PE=.
【解析】
(1)先根據(jù)線段垂直平分線的性質(zhì)證明PB=PE,由ASA證明△BOQ≌△EOP,得出PE=QB,證出四邊形BPEQ是平行四邊形,再根據(jù)菱形的判定即可得出結(jié)論;
(2)由三角形中位線定理可得AE=2OF,由勾股定理可得AE=8,再由勾股定理可得PB的長.
(1)證明:∵PQ垂直平分BE,
∴PB=PE,OB=OE,
∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠PEO=∠QBO,
在△BOQ與△EOP中,
,
∴△BOQ≌△EOP(ASA),
∴PE=QB,
又∵AD∥BC,
∴四邊形BPEQ是平行四邊形,
又∵QB=QE,
∴四邊形BPEQ是菱形;
(2)∵點F為AB的中點,OB=OE,OF+OB=9,
∴AE=2OF,BE=2OB,AE+BE=18
設(shè)AE=x,BE=18-x,
∵BE2=AB2+AE2,
∴(18-x)2=36+x2,
∴x=8
∵AB2+AP2=PB2,
∴36+(8-PB)2=PB2,
∴PB=
∴PE=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AB∥CD,直線分別交,于,兩點,若,分別是,的角平分線,試說明:ME∥NF.
解:∵AB∥CD,(已知)
∴,( )
∵,分別是,的角平分線,(已知)
∴∠EMN= ∠AMN,
∠FNM= ∠DNM,(角平分線的定義)
∴,(等量代換)
∴ME∥NF,( )
由此我們可以得出一個結(jié)論:兩條平行線被第三條直線所截,一對 角的平分線互相 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與y軸的正半軸交于點A,其頂點B在軸的負(fù)半軸上,且OA=OB,對于下列結(jié)論:①≥0;②;③關(guān)于的方程無實數(shù)根;④的最小值為3.其中正確結(jié)論的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于的方程有兩個不相等的實數(shù)根.
求實數(shù)的取值范圍;
是否存在實數(shù),使方程的兩個實數(shù)根之和等于兩實數(shù)根之積的算術(shù)平方根?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個小立方塊的六個面分別標(biāo)有字母A、B、C、D、E、F,從三個不同方向看到的情形如圖所示,其中A、B、C、D、E、F分別代表數(shù)字-2、-1、0、1、2、3,則三個小立方塊的下底面所標(biāo)字母代表的數(shù)字的和為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E在正方形ABCD的邊AB上,連接DE,過點C作CF⊥DE于F,過點A作AG∥CF交DE于點G.
(1)求證:△DCF≌△ADG.
(2)若點E是AB的中點,設(shè)∠DCF=α,求sinα的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“精準(zhǔn)扶貧”這是新時期黨和國家扶貧工作的精髓和亮點.某校團(tuán)委隨機抽取部分學(xué)生,對他們是否了解關(guān)于“精準(zhǔn)扶貧”的情況進(jìn)行調(diào)查,調(diào)查結(jié)果有三種:A、了解很多;B、了解一點;C、不了解.團(tuán)委根據(jù)調(diào)查的數(shù)據(jù)進(jìn)行整理,繪制了尚不完整的統(tǒng)計圖如下,圖1中C區(qū)域的圓心角為36°,請根據(jù)統(tǒng)計圖中的相關(guān)的信息,解答下列問題:
(1)求本次活動共調(diào)查了 名學(xué)生;圖1中,B區(qū)域的圓心角度是 ;在抽取的學(xué)生中調(diào)查結(jié)果的中位數(shù)落在 區(qū)域里.
(2)補全條形統(tǒng)計圖.
(3)若該校有1200名學(xué)生,請估算該校不是了解很多的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是正方形,是邊所在直線上的點,,且交正方形外角的平分線于點.
(1)當(dāng)點在線段中點時(如圖①),易證,不需證明;
(2)當(dāng)點在線段上(如圖②)或在線段延長線上(如圖③)時,(1)中的結(jié)論是否仍然成立?請寫出你的猜想,并選擇圖②或圖③的一種結(jié)論給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,的平分線與的平分線相交于,過點作,交直線于點,交直線于點,通過上述條件,我們不難發(fā)現(xiàn):;如圖,的平分線與的外角平分線相交于,過點作,交直線于點,交直線于點根據(jù)圖所得的結(jié)論,試猜想,,之間存在什么關(guān)系?( )
A. B. C. D. 無法判斷
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com