【題目】如圖,菱形ABCD的邊長為4,∠BAD=60°,點E是AD上一動點(不與A、D重合),點F是CD上一動點,且AE+CF=4,則△DEF面積的最大值為__________
【答案】
【解析】首先過點F作FG⊥AD,交AD的延長線于點G,由菱形ABCD的邊長為4,∠BAD=60°,即可求得AD=CD=4,∠FDG=60°,然后設AE=x,即可得S△DEF=DEFG=﹣(x﹣2)2+,然后根據二次函數的性質,即可求得答案.
過點F作FG⊥AD,交AD的延長線于點G.
∵菱形ABCD邊長為4,∠BAD=60°,∴AD=CD=4,∠ADB=180°﹣∠BAD=120°,∴∠FDG=180°﹣∠ADB=60°,設AE=x.
∵AE+CF=4,∴CF=4﹣x;
∴DE=AD﹣AE=4﹣x,DF=CD﹣CF=4﹣(4﹣x)=x.在Rt△DFG中,FG=DFsin∠GDF=x,∴S△DEF=DEFG=×(4﹣x)×x=﹣x2+x=﹣(x2﹣4x)=﹣(x﹣2)2+,∴當x=2時,△DEF面積的最大,最大值為.
故答案為:.
科目:初中數學 來源: 題型:
【題目】某班為了從甲、乙兩同學中選出班長,進行了一次演講答辯和民主測評,,,,,五位老師作為評委,對演講答辯情況進行評價,結果如下表:演講答辯得分表,另全班位同學則參與民主測評進行投票,結果如下圖:民主測評統(tǒng)計圖
規(guī)定:演講得分按“去掉一個最高分和一個最低分再算平均分”的方法確定;民主測評得分“好”票數分+“較好”票數分+“一般”票數分.
求甲、乙兩位選手各自演講答辯的平均分;
試求民主測評統(tǒng)計圖中、的值是多少?
若演講答辯得分和民主測評得分按的權重比計算兩位選手的綜合得分,則應選取哪位選手當班長?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠AOB為直角,∠AOC為銳角,且OM平分∠BOC,ON平分∠AOC.
(1)如果∠AOC=50°,求∠MON的度數;
(2)如果∠AOC為任意一個銳角,你能求出∠MON的度數嗎?若能,請求出來,若不能,說明為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a、b、c是常數,且a≠0)中的x與y的部分對應值如下表所示,則下列結論中,正確的個數有( )
x | -7 | -6 | -5 | -4 | -3 | -2 |
y | -27 | -13 | -3 | 3 | 5 | 3 |
①當x<-4時,y<3②當x=1時,y的值為-13;③-2是方程ax2+(b-2)x+c-7=0的一個根;④方程ax2+bx+c=6有兩個不相等的實數根.
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】每天早晨王老師7點準時騎自行車去學校上班,今天早晨由于走的匆忙,忘帶一樣重要東西。當他騎車至距學校6千米處時,原地返回,加速回到家,取完東西又以最初出發(fā)時的速度騎車去學校。如圖是王老師今早出行的過程中他距學校的距離y(km)與他離家所用時間x(min)之間的函數圖像.
根據圖像解答下列問題:
(1)求直線AB的解析式.
(2)如果學校8:30準時上課,請問王老師能否按時到校上課?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,⊙O過AC的中點D,DE⊥BC于點E.
(1)求證:DE為⊙O的切線;
(2)若DE=2,tanC=,求⊙O的直徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,點為二次函數圖象的頂點,直線分別交軸正半軸,軸于點,.
(1)判斷頂點是否在直線上,并說明理由.
(2)如圖1,若二次函數圖象也經過點,,且,根據圖象,寫出的取值范圍.
(3)如圖2,點坐標為,點在內,若點,都在二次函數圖象上,試比較與的大小.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(背景知識)
數軸是初中數學的一個重要工具,利用數軸可以將數與形完美地結合.研究數軸我們發(fā)現(xiàn)了許多重要的規(guī)律:若數軸上點、點表示的數分別為、,則、兩點之間的距離,線段的中點表示的數為.
(問題情境)
如圖,數軸上點表示的數為,點表示的數為8,點從點出發(fā),以每秒3個單位長度的速度沿數軸向右勻速運動,同時點從點出發(fā),以每秒2個單位長度的速度向左勻速運動,設運動時間為秒().
(綜合運用)
(1)填空:
①、兩點之間的距離________,線段的中點表示的數為__________.
②用含的代數式表示:秒后,點表示的數為____________;點表示的數為___________.
③當_________時,、兩點相遇,相遇點所表示的數為__________.
(2)當為何值時,.
(3)若點為的中點,點為的中點,點在運動過程中,線段的長度是否發(fā)生變化?若變化,請說明理由;若不變,請求出線段的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com