【題目】數(shù)學(xué)課堂探究性活動(dòng)蔚然成風(fēng)。張老師在課堂上設(shè)置一道習(xí)題:

(1)已知矩形ABCD和點(diǎn)P,當(dāng)點(diǎn)P在BC上任一位置(如圖1所示)時(shí),探究PA2、PB2、PC2、PD2,之間的關(guān)系?直接寫出結(jié)論,不必證明;

當(dāng)P點(diǎn)在其它位置時(shí),請同學(xué)們分組探究:

(2)當(dāng)點(diǎn)P在矩形內(nèi)部,如圖2時(shí),探究PA2、PB2、PC2、PD2之間的數(shù)量關(guān)系,請你把探究出的結(jié)論寫出來,并給予證明。

(3)當(dāng)點(diǎn)P在矩形外部,如圖3時(shí),繼續(xù)探完P(guān)A2、PB2、PC2、PD2之間的數(shù)量關(guān)系,請你把探究出的結(jié)論直接寫出來,不必證明。

【答案】(1)(2)(3)結(jié)論P(yáng)A2+PC2=PB2+PD2,證明見解析

【解析】試題分析:(1)直接根據(jù)勾股定理即可得出結(jié)論;

2)過點(diǎn)PMNAD于點(diǎn)MBC于點(diǎn)N,可在Rt△AMP,Rt△BNP,Rt△DMPRt△CNP分別用勾股定理表示出PA2,PC2,PB2PD2,然后我們可得出PA2+PC2PB2+PD2,我們不難得出四邊形MNCD是矩形,于是,MD=NCAM=BN,然后我們將等式右邊的值進(jìn)行比較發(fā)現(xiàn)PA2+PC2=PB2+PD2.如圖(3)方法同(2),過點(diǎn)PPQBCAD,BCO易證.

試題解析證明:(1)如圖1中.在RtABP,AB2=AP2BP2,Rt△PDCCD2=PD2PC2AB=CD,AP2BP2=PD2PC2PA2+PC2=PB2+PD2;

2)猜想PA2+PC2=PB2+PD2

如圖2,過點(diǎn)PMNAD于點(diǎn)M,BC于點(diǎn)N

在矩形ABCD中,∵ADBCMNAD,MNBCRt△AMPPA2=PM2+MA2.在RtBNP,PB2=PN2+BN2.在RtDMP,PD2=DM2+PM2.在RtCNP,PC2=PN2+NC2PA2+PC2=PM2+MA2+PN2+NC2,PB2+PD2=PM2+DM2+BN2+PN2MNAD,MNNC,DCBC四邊形MNCD是矩形,MD=NC同理AM=BN,PM2+MA2+PN2+NC2=PM2+DM2+BN2+PN2PA2+PC2=PB2+PD2

3)如圖3,過點(diǎn)PPQBCAD,BCO,Q

在矩形ABCD,ADBC,PQBC,PQADRt△AOPPA2=AO2+PO2.在RtPQB,PB2=PQ2+QB2.在RtPODPD2=DO2+PO2.在RtCQP,PC2=PQ2+QC2PA2+PC2=PO2+OA2+PQ2+QC2,PB2+PD2=PQ2+QB2+DO2+PO2PQAD,PQNC,DCBC,四邊形OQCD是矩形,OD=QC,同理AO=BQPA2+PC2=PB2+PD2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的材料:

符號、p分別表示一種運(yùn)算,它對一些數(shù)的運(yùn)算結(jié)果如下:

0=-1, 1=0 , 2=1 , -3=-4, -4=-5,……

p-1=-2,p=1,p=, p2=4 p-3=-6,……

根據(jù)以上運(yùn)算規(guī)律,完成下列問題:

1)計(jì)算:-5)×p+2

2)已知x為有理數(shù),且x+ p=2×-4),求x的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料,回答下列問題:

數(shù)軸是學(xué)習(xí)有理數(shù)的一種重要工具,任何有理數(shù)都可以用數(shù)軸上的點(diǎn)表示,這樣能夠運(yùn)用數(shù)形結(jié)合的方法解決一些問題。例如,兩個(gè)有理數(shù)在數(shù)軸上對應(yīng)的點(diǎn)之間的距離可以用這兩個(gè)數(shù)的差的絕對值表示;

在數(shù)軸上,有理數(shù)31對應(yīng)的兩點(diǎn)之間的距離為|31|=2;

在數(shù)軸上,有理數(shù)52對應(yīng)的兩點(diǎn)之間的距離為|5(2)|=7;

在數(shù)軸上,有理數(shù)23對應(yīng)的兩點(diǎn)之間的距離為|23|=5

在數(shù)軸上,有理數(shù)85對應(yīng)的兩點(diǎn)之間的距離為|8(5)|=3;……

如圖1,在數(shù)軸上有理數(shù)a對應(yīng)的點(diǎn)為點(diǎn)A,有理數(shù)b對應(yīng)的點(diǎn)為點(diǎn)B,A,B兩點(diǎn)之間的距離表示為|ab||ba|,記為|AB|=|ab|=|ba|.

(1)數(shù)軸上有理數(shù)105對應(yīng)的兩點(diǎn)之間的距離等于___;數(shù)軸上有理數(shù)x5對應(yīng)的兩點(diǎn)之間的距離用含x的式子表示為___;若數(shù)軸上有理數(shù)x1對應(yīng)的兩點(diǎn)A,B之間的距離|AB|=2,則x等于___;

(2)如圖2,點(diǎn)M,N,P是數(shù)軸上的三點(diǎn),點(diǎn)M表示的數(shù)為4,點(diǎn)N表示的數(shù)為2,動(dòng)點(diǎn)P表示的數(shù)為x.

①若點(diǎn)P在點(diǎn)M,N之間,則|x+2|+|x4|=___;若|x+2|+|x4|═10,則x=___;

②根據(jù)閱讀材料及上述各題的解答方法,|x+2|+|x|+|x2|+|x4|的最小值等于___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】出租車司機(jī)小王某天下午營運(yùn)是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天下午行車?yán)锍?單位:千米)如下:

+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.

(1)將最后一名乘客送到目的地時(shí),小王距下午出車時(shí)的出發(fā)點(diǎn)多遠(yuǎn)?

(2)若汽車耗油量為0.05升/千米,這天下午小王的汽車共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知B,C,E三點(diǎn)在同一條直線上,△ABC與△DCE都是等邊三角形,其中線段BD交AC于點(diǎn)G,線段AE交CD于點(diǎn)F.求證:(1)△ACE≌△BCD;(2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個(gè)小方格都是邊長為1個(gè)單位長度的正方形,在建立平面直角坐標(biāo)系后,ABC的頂點(diǎn)坐標(biāo)為A1-4),B5-4),C4-1).

1)在方格紙中畫出ABC;

2)求出ABC的面積;

3)若把ABC向上平移6個(gè)單位長度,再向左平移7個(gè)單位長度得到A′B′C′,在圖中畫出A′B′C′,并寫出B′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),已知點(diǎn)A(0,6),點(diǎn)B(8,0).動(dòng)點(diǎn)PA開始在線段AO上以每秒1個(gè)單位長度的速度向點(diǎn)O移動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B開始在線段BA上以每秒2個(gè)單位長度的速度向點(diǎn)A移動(dòng),設(shè)點(diǎn)P,Q移動(dòng)的時(shí)間為t秒.

(1)求直線AB的解析式;

(2)當(dāng)t為何值時(shí),△APQ△AOB相似,并求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年夏季山洪暴發(fā),易發(fā)生滑坡,經(jīng)過地質(zhì)人員勘測,當(dāng)坡角不超過時(shí),可以確保山體不滑坡.某中學(xué)緊挨一座山體斜坡,如圖所示,已知,斜坡30米,坡角,為保證改造后的山體不滑坡,求至少是多少米?(精確到0.1米,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,某超市從底樓到二樓有一自動(dòng)扶梯,圖2是側(cè)面示意圖已知自動(dòng)扶梯AB的長度是125米,MN是二樓樓頂,MNPQ,C是MN上處在自動(dòng)扶梯頂端B點(diǎn)正上方的一點(diǎn),BCMN,在自動(dòng)扶梯底端A處測得C點(diǎn)的仰角CAQ為45°,坡角BAQ為37°,求二樓的層高BC精確到01米).(參考數(shù)據(jù):sin37°≈060,cos37°≈080,tan37°≈075

查看答案和解析>>

同步練習(xí)冊答案