【題目】把圖中陰影部分的小正方形移動一個,使它與其余四個陰影部分的正方形組成一個既是軸對稱又是中心對稱的新圖形,這樣的移法,正確的是( 。
A. 6→3 B. 7→16 C. 7→8 D. 6→15
【答案】D
【解析】
根據(jù)軸對稱圖形和中心對稱圖形的定義逐項識別即可,在平面內(nèi),一個圖形經(jīng)過中心對稱能與原來的圖形重合,這個圖形叫做叫做中心對稱圖形。一個圖形的一部分,以某條直線為對稱軸,經(jīng)過軸對稱能與圖形的另一部分重合,這樣的圖形叫做軸對稱圖形.
6→3 ,能使它與其余四個陰影部分的正方形組成一個軸對稱圖形,但不是中心對稱圖形 ,故不符合題意;
B. 7→16,能使它與其余四個陰影部分的正方形組成一個中心對稱圖形,但不是軸對稱圖形,故不符合題意;
C. 7→8 ,能使它與其余四個陰影部分的正方形組成一個軸對稱圖形,但不是中心對稱圖形,故不符合題意;
D. 6→15,能使它與其余四個陰影部分的正方形組成一個既是軸對稱又是中心對稱的新圖形,故符合題意;
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】我們用f(x)表示不大于x的最大整數(shù),例如:f(2.3)=2,f(4)=4,f(﹣1.5)=﹣2;用g(y)表示不小于y的最小整數(shù).例如:g(2.5)=3,g(5)=5,g(﹣3.5)=﹣3.解決下列問題:
(1)根據(jù)以上運算規(guī)律:f(﹣5.4)=______,g(4.5)=______.
(2)若f(x)=3,則x的取值范圍是_______;若g(y)=﹣2,則y的取值范圍是______.
(3)已知x,y滿足,求x,y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長是4,點E是AB邊上一動點,連接CE,過點B作BG⊥CE于點G,點P是AB邊上另一動點,則PD+PG的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列解題過程:
===-2;
==.
請回答下列問題:
(1)觀察上面的解題過程,請直接寫出式子= ;
(2)觀察上面的解題過程,請直接寫出式子= ;
(3)利用上面所提供的解法,請求+···+的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,半徑為1個單位的圓片上有一點A與數(shù)軸上的原點重合,AB是圓片的直徑.
(1)把圓片沿數(shù)軸向左滾動1周,點A到達數(shù)軸上點C的位置,點C表示的數(shù)是______數(shù)(填“無理”或“有理”),這個數(shù)是______;
(2)把圓片沿數(shù)軸滾動2周,點A到達數(shù)軸上點D的位置,點D表示的數(shù)是______;
(3)圓片在數(shù)軸上向右滾動的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動的周數(shù)記為負數(shù),依次運動情況記錄如下:+2,-1,-5,+4,+3,-2當圓片結束運動時,A點運動的路程共有多少?此時點A所表示的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某網(wǎng)絡公司推出了一系列上網(wǎng)包月業(yè)務,其中的一項業(yè)務是10M“40元包200小時”,且其中每月收取費用y(元)與上網(wǎng)時間x(小時)的函數(shù)關系如圖所示.
(1)當x≥200時,求y與x之間的函數(shù)關系式
(2)若小剛家10月份上網(wǎng)180小時,則他家應付多少元上網(wǎng)費?
(3)若小明家10月份上網(wǎng)費用為52元,則他家該月的上網(wǎng)時間是多少小時?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商城銷售A,B兩種自行車.A型自行車售價為2 100元/輛,B型自行車售價為1 750元/輛,每輛A型自行車的進價比每輛B型自行車的進價多400元,商城用80 000元購進A型自行車的數(shù)量與用64 000元購進B型自行車的數(shù)量相等.
(1)求每輛A,B兩種自行車的進價分別是多少?
(2)現(xiàn)在商城準備一次購進這兩種自行車共100輛,設購進A型自行車m輛,這100輛自行車的銷售總利潤為y元,要求購進B型自行車數(shù)量不超過A型自行車數(shù)量的2倍,總利潤不低于13 000元,求獲利最大的方案以及最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y1=ax2﹣x+c與x軸交于點A和點B(1,0),與y軸交于點C(0,),拋物線y1的頂點為G,GM⊥x軸于點M.將拋物線y1平移后得到頂點為B且對稱軸為直線l的拋物線y2.
(1)求拋物線y2的解析式;
(2)如圖2,在直線l上是否存在點T,使△TAC是等腰三角形?若存在,請求出所有點T的坐標;若不存在,請說明理由;
(3)點P為拋物線y1上一動點,過點P作y軸的平行線交拋物線y2于點Q,點Q關于直線l的對稱點為R,若以P,Q,R為頂點的三角形與△AMG全等,求直線PR的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分線.若P,Q分別是AD和AC上的動點,則PC+PQ的最小值是( )
A. B. 4 C. D. 5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com