【題目】如圖1,拋物線y1=ax2x+cx軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,),拋物線y1的頂點(diǎn)為G,GMx軸于點(diǎn)M.將拋物線y1平移后得到頂點(diǎn)為B且對(duì)稱軸為直線l的拋物線y2

(1)求拋物線y2的解析式;

(2)如圖2,在直線l上是否存在點(diǎn)T,使TAC是等腰三角形?若存在,請(qǐng)求出所有點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說明理由;

(3)點(diǎn)P為拋物線y1上一動(dòng)點(diǎn),過點(diǎn)Py軸的平行線交拋物線y2于點(diǎn)Q,點(diǎn)Q關(guān)于直線l的對(duì)稱點(diǎn)為R,若以P,Q,R為頂點(diǎn)的三角形與AMG全等,求直線PR的解析式.

【答案】(1)見解析;(2)見解析;(3)見解析.

【解析】

1)應(yīng)用待定系數(shù)法求解析式;

(2)設(shè)出點(diǎn)T坐標(biāo),表示TAC三邊,進(jìn)行分類討論;

(3)設(shè)出點(diǎn)P坐標(biāo),表示Q、R坐標(biāo)及PQ、QR,根據(jù)以P,Q,R為頂點(diǎn)的三角形與AMG全等,分類討論對(duì)應(yīng)邊相等的可能性即可.

(1)由已知,c=

B(1,0)代入,得:a﹣=0,

解得a=﹣

拋物線解析式為y1=x2- x+,

∵拋物線y1平移后得到y2,且頂點(diǎn)為B(1,0),

y2=﹣(x﹣1)2

y2=-x2+ x-;

(2)存在,

如圖1:

拋物線y2的對(duì)稱軸lx=1,設(shè)T(1,t),

已知A(﹣3,0),C(0,),

過點(diǎn)TTEy軸于E,則

TC2=TE2+CE2=12+(2=t2t+,

TA2=TB2+AB2=(1+3)2+t2=t2+16,

AC2=,

當(dāng)TC=AC時(shí),t2t+=

解得:t1=,t2=

當(dāng)TA=AC時(shí),t2+16=,無解;

當(dāng)TA=TC時(shí),t2t+=t2+16,

解得t3=﹣;

當(dāng)點(diǎn)T坐標(biāo)分別為(1,),(1,),(1,﹣)時(shí),△TAC為等腰三角形;

(3)如圖2:

設(shè)P(m,),則Q(m,),

Q、R關(guān)于x=1對(duì)稱

R(2﹣m,),

①當(dāng)點(diǎn)P在直線l左側(cè)時(shí),

PQ=1﹣m,QR=2﹣2m,

∵△PQR與△AMG全等,

∴當(dāng)PQ=GMQR=AM時(shí),m=0,

P(0,),即點(diǎn)P、C重合

R(2,﹣),

由此求直線PR解析式為y=﹣x+

當(dāng)PQ=AMQR=GM時(shí),無解;

②當(dāng)點(diǎn)P在直線l右側(cè)時(shí),

同理:PQ=m﹣1,QR=2m﹣2,

P(2,﹣),R(0,﹣),

PQ解析式為:y=﹣;

PR解析式為:y=﹣x+y=﹣.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AC=BC,ACB=90°,AD平分BAC,BFAD,AD的延長(zhǎng)線交BF于E,且E為垂足,則結(jié)論AD=BF,CF=CD,AC+CD=AB,BE=CF,BF=2BE,其中正確的結(jié)論的個(gè)數(shù)是(

A.4 B.3 C.2 D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把圖中陰影部分的小正方形移動(dòng)一個(gè),使它與其余四個(gè)陰影部分的正方形組成一個(gè)既是軸對(duì)稱又是中心對(duì)稱的新圖形,這樣的移法,正確的是( 。

A. 6→3 B. 7→16 C. 7→8 D. 6→15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)yax22ax3aa0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D

1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);

2)若以AD為直徑的圓經(jīng)過點(diǎn)C

①求拋物線的函數(shù)關(guān)系式;

②如圖2,點(diǎn)Ey軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)P、M、N分別和點(diǎn)O、B、E對(duì)應(yīng)),并且點(diǎn)MN都在拋物線上,作MFx軸于點(diǎn)F,若線段MFBF12,求點(diǎn)MN的坐標(biāo);

③點(diǎn)Q在拋物線的對(duì)稱軸上,以Q為圓心的圓過A、B兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,折疊矩形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處.

(1)如圖1,若折痕,且,求矩形ABCD的周長(zhǎng);

(2)如圖2,在AD邊上截取DG=CF,連接GE,BD,相交于點(diǎn)H,求證:BDGE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,點(diǎn)EAD的中點(diǎn),連接BE,BF平分∠EBCCD于點(diǎn)F,交AC于點(diǎn)G,將CGF沿直線GF折疊至C′GF,BDC′GF相交于點(diǎn)M、N,連接CN,若AB=6,則四邊形CNC′G的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題情境)

徐老師給愛好學(xué)習(xí)的小敏和小捷提出這樣一個(gè)問題:

如圖1△ABC中,∠B=2∠C,AD∠BAC的平分線.求證:AB+BD=AC

小敏的證明思路是:在AC上截取AE=AB,連接DE.(如圖2

小捷的證明思路是:延長(zhǎng)CB至點(diǎn)E,使BE=AB,連接AE. 可以證得:AE=DE(如圖3

請(qǐng)你任意選擇一種思路繼續(xù)完成下一步的證明.

(變式探究)

“AD∠BAC的平分線改成“ADBC邊上的高,其它條件不變.(如圖4),AB+BD=AC成立嗎?若成立,請(qǐng)證明;若不成立,寫出你的正確結(jié)論,并說明理由.

(遷移拓展)

△ABC中,∠B=2∠C. 求證:AC2=AB2+ABBC. (如圖5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)在圖(1)中編號(hào)①②③④的四個(gè)三角形中,關(guān)于y軸對(duì)稱的兩個(gè)三角形的編號(hào)為_________;關(guān)于x軸對(duì)稱的兩個(gè)三角形的編號(hào)為___________;

2)在圖(2)中,畫出ΔABC關(guān)于x軸對(duì)稱的圖形ΔA1B1C1。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=ACAC上的中線BD把三角形的周長(zhǎng)分為24㎝和30㎝的兩個(gè)部分,求三角形的三邊長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案