【題目】某地區(qū)2015年投入教育經(jīng)費(fèi)2900萬元,2017年投入教育經(jīng)費(fèi)3509萬元.

1)求2015年至2017年該地區(qū)投入教育經(jīng)費(fèi)的年平均增長(zhǎng)率;

2)按照義務(wù)教育法規(guī)定,教育經(jīng)費(fèi)的投入不低于國(guó)民生產(chǎn)總值的百分之四,結(jié)合該地區(qū)國(guó)民生產(chǎn)總值的情況,該地區(qū)到2019年需投入教育經(jīng)費(fèi)4250萬元.如果按(1)中教育經(jīng)費(fèi)投入的增長(zhǎng)率,到2019年該地區(qū)投入的教育經(jīng)費(fèi)是否能達(dá)到4250萬元?請(qǐng)說明理由.

【答案】(1)10%2)不能.

【解析】

1)增長(zhǎng)前量1+增長(zhǎng)率)=增長(zhǎng)后量,20152900萬元為增長(zhǎng)前量,20173509萬元為增長(zhǎng)后量,即可列出方程求解;

(2)根據(jù)(1)中求得的增長(zhǎng)率求出2019年該地區(qū)投入的教育經(jīng)費(fèi).

1)設(shè)增長(zhǎng)率為x,由題意得

,

解得(不合題意,舍去)

答:2015年至2017年該地區(qū)投入教育經(jīng)費(fèi)的年平均增長(zhǎng)率為10%.

(2)2019年該地區(qū)投入的教育經(jīng)費(fèi)是(萬元),

4245.89

答:按(1)中教育經(jīng)費(fèi)投入的增長(zhǎng)率,到2019年該地區(qū)投入的教育經(jīng)費(fèi)不能達(dá)到4250萬元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,高ADBE交于點(diǎn)H,且∠1=∠222.5°,下列結(jié)論正確的有( 。

①∠1=∠3;②BD+DHAB;③2AHBH;④若CD,則BH3;⑤若DFBE于點(diǎn)F,則AEDFFH

A.①②④B.①②⑤C.②③④D.③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形兩邊長(zhǎng)分別是,第三邊的長(zhǎng)是一元二次方程的一個(gè)實(shí)數(shù)根,則此三角形的外接圓半徑為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我縣古田鎮(zhèn)某紀(jì)念品商店在銷售中發(fā)現(xiàn):成功從這里開始的紀(jì)念品平均每天可售出20件,每件盈利40元.為了擴(kuò)大銷售量,增加盈利,盡快減少庫(kù)存,該商店在今年國(guó)慶黃金周期間,采取了適當(dāng)?shù)慕祪r(jià)措施,改變營(yíng)銷策略后發(fā)現(xiàn):如果每件降價(jià)4元,那么平均每天就可多售出8件.商店要想平均每天在銷售這種紀(jì)念品上盈利1200元,那么每件紀(jì)念品應(yīng)降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個(gè)問題:探究函數(shù)的圖象與性質(zhì).小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小東的探究過程,請(qǐng)補(bǔ)充完整:

(1)函數(shù)的自變量x的取值范圍是

(2)下表是xy的幾組對(duì)應(yīng)值.

...

1

2

3

...

...

m

...

m的值;

(3)如圖,在平面直角坐標(biāo)系中,已描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;

(4)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點(diǎn)的坐標(biāo)是(1,).結(jié)合函數(shù)的圖象,寫出該函數(shù)的其它性質(zhì)(寫兩條即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500,在銷售過程中銷售單價(jià)不低于成本價(jià),而每件的利潤(rùn)不高于成本價(jià)的60%

1)設(shè)小明每月獲得利潤(rùn)為w(元),求每月獲得利潤(rùn)w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.

2)當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?每月的最大利潤(rùn)是多少?

3)如果小明想要每月獲得的利潤(rùn)不低于2000元,那么小明每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC中,∠ABC∠ACB的平分線交于點(diǎn)F,過點(diǎn)FDE∥BCAB于點(diǎn)DAC于點(diǎn)E,那么下列結(jié)論中正確的是 ( )

①△BDF△CEF都是等腰三角形

②DE=BD+CE

③△ADE的周長(zhǎng)等于ABAC的和

④BF=CF

A. ①②③④ B. ①②③ C. ①② D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)?jiān)谙旅胬ㄌ?hào)里補(bǔ)充完整證明過程:

已知:如圖,△ABC中,∠ACB90°,AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F,且∠CEF=∠CFE.求證:CDAB.

證明:∵AF平分∠CAB (已知)

1=∠2

∵∠CEF=∠CFE , 又∠3=CEF (對(duì)頂角相等)

∴∠CFE=3(等量代換)

∵在△ACF中,∠ACF90°(已知)

∴( +CFE90°

∵∠1=∠2, CFE=3(已證) ∴( + )=90°(等量代換)

在△AED, ADE90°( 三角形內(nèi)角和定理)

CDAB .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景點(diǎn)試開放期間,團(tuán)隊(duì)收費(fèi)方案如下:不超過30人時(shí),人均收費(fèi)120元;超過30人且不超過m30m≤100)人時(shí),每增加1人,人均收費(fèi)降低1元;超過m人時(shí),人均收費(fèi)都按照m人時(shí)的標(biāo)準(zhǔn).設(shè)景點(diǎn)接待有x名游客的某團(tuán)隊(duì),收取總費(fèi)用為y元.

1)求y關(guān)于x的函數(shù)表達(dá)式;

2)景點(diǎn)工作人員發(fā)現(xiàn):當(dāng)接待某團(tuán)隊(duì)人數(shù)超過一定數(shù)量時(shí),會(huì)出現(xiàn)隨著人數(shù)的增加收取的總費(fèi)用反而減少這一現(xiàn)象.為了讓收取的總費(fèi)用隨著團(tuán)隊(duì)中人數(shù)的增加而增加,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案