【題目】如圖△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)F,過點(diǎn)F作DE∥BC交AB于點(diǎn)D交AC于點(diǎn)E,那么下列結(jié)論中正確的是 ( )
①△BDF和△CEF都是等腰三角形
②DE=BD+CE
③△ADE的周長等于AB和AC的和
④BF=CF
A. ①②③④ B. ①②③ C. ①② D. ①
【答案】B
【解析】
由平行線的性質(zhì)及角平分線的定義易證∠DBF=∠DFB,∠EFC=∠ECF,即可判定①;由①得DF=DB,F(xiàn)E=EC,由此即可判定②③;因△ABC不是等腰三角形,所以∠ABC≠∠ACB,由此即可判定④.
∵DE∥BC,
∴∠DFB=∠FBC,∠EFC=∠FCB,
∵BF是∠ABC的平分線,CF是∠ACB的平分線,
∴∠FBC=∠DBF,∠FCE=∠FCB,
∴∠DBF=∠DFB,∠EFC=∠ECF,
∴△DFB,△FEC都是等腰三角形.
∴①正確
∵△DFB,△FEC都是等腰三角形.
∴DF=DB,F(xiàn)E=EC,即有DE=DF+FE=DB+EC,
∴△ADE的周長AD+AE+DE=AD+AE+DB+EC=AB+AC.
∴②③正確;
∵△ABC不是等腰三角形,
∴∠ABC≠∠ACB,
∴∠FBC≠∠FCB,
∴BF≠CF,
∴④錯誤.
綜上,正確的結(jié)論為①②③.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點(diǎn),BE=BA,過E作EF⊥AB,F(xiàn)為垂足.下列結(jié)論:①△ABD≌△EBC; ②∠BCE+∠BCD=180°; ③AF2=EC2﹣EF2; ④BA+BC=2BF.其中正確的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一節(jié)”期間,王老師一家自駕游去了離家170千米的某地,下面是他們家的距離y(千米)與汽車行駛時間x(小時)之間的函數(shù)圖象,求當(dāng)他們離目的地還有20千米時,汽車一共行駛的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC是直角三角形,∠A=90°,D是斜邊BC的中點(diǎn),E、F分別是AB、AC邊上的動點(diǎn),且DE⊥DF.
(1)如圖1,AB=AC,BE=12,CF=5,求線段EF的長.
(2)如圖2,若AB≠AC,寫出線段EF與線段BE、CF之間的等量關(guān)系,并寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把△沿對折,疊合后的圖形如圖所示.若,,則∠2的度數(shù)為( )
A. 24° B. 35° C. 30° D. 25°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)在平面直角坐標(biāo)系中的位置如圖所示,對稱軸是直線 .則下列結(jié)論中,正確的是( )
A.a<0
B.c<﹣1
C.a﹣b+c<0
D.2a+3b=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E是△ABC內(nèi)一點(diǎn),若∠AEB=∠CED=90°,AE=BE,CE=DE=2,則圖中陰影部分的面積等于__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,直線MN經(jīng)過點(diǎn)A,過點(diǎn)B作BD⊥MN于D,過C作CE⊥MN于E.
(1)求證:△ABD≌△CAE;
(2)若BD=12cm,DE=20cm,求CE的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com