【題目】如圖拋物線與x軸分別交于A、B兩點,頂點C在y軸負半軸上,也在正方形ADEB的邊上,已知正方形ADEB的邊長為2,若正方形FGMN的頂點F、G落在x軸上,頂點M、N落在圖中的拋物線上,則正方形FGMN的邊長為.

【答案】
【解析】依題可得A(-1,0),B(1,0),C(0,-2),
∴設拋物線解析式為:y=a(x-1)(x+1),
∵C(0,-2)在拋物線上,
∴a×(-1)×1=-2,
∴a=2,
∴拋物線解析式為:y=2x2-2,
設F(m,0),G(-m,0),
∴N(m,2m2-2),M(-m,2m2-2),
又四邊形FGMN為正方形,
∴FG=GM,
=
∴m=,
∴正方形FGMN的邊長為:2m=1.
所以答案是:1.


【考點精析】本題主要考查了正方形的性質的相關知識點,需要掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD(紙片)折疊,使點BAD邊上的點K重合,EG為折痕;點CAD邊上的點K重合,FH為折痕.已知∠1=67.5°,2=75°,EF=+1,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,ADBCAC,BD相交于O,則圖中能夠全等的三角形共有(  )對.

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列事件中,是隨機事件的是( )
A.任意選擇某一電視頻道,它正在播放新聞聯(lián)播
B.三角形任意兩邊之和大于第三邊
C. 是實數(shù),
D.在一個裝著白球和黑球的袋中摸球,摸出紅球

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ACB中,∠ACB=90°,∠A=35°,將△ABC繞點C逆時針旋轉α角到△A1B1C的位置,A1B1恰好經(jīng)過點B,則旋轉角α的度數(shù)等( )
A.35°
B.55°
C.65°
D.70°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c,當x取1時,函數(shù)有最大值為3,且函數(shù)的圖象經(jīng)過點(-2,0)。
(1)求這個二次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出函數(shù)值y大于零時x的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】株洲五橋主橋主孔為拱梁鋼構組合體系(如圖1),小明暑假旅游時,來到五橋觀光,發(fā)現(xiàn)拱梁的路面部分有均勻排列著9根支柱,他回家上網(wǎng)查到了拱梁是拋物線,其跨度為20米,拱高(中柱)10米,于是他建立如圖2的坐標系,發(fā)現(xiàn)可以將余下的8根支柱的高度都算出來了,請你求出中柱左邊第二根支柱CD的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC 是等腰直角三角形,分別以直角邊 AC,BC 為直徑畫弧,若 AB=2 ,則圖中陰影部分的面積是( )

A.
B.
C.
D. +

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)閱讀以下內(nèi)容:

已知實數(shù)x,y滿足x+y=2,且求k的值.

三位同學分別提出了以下三種不同的解題思路:

甲同學:先解關于x,y的方程組,再求k的值.

乙同學:先將方程組中的兩個方程相加,再求k的值.

丙同學:先解方程組,再求k的值.

(2)你最欣賞(1)中的哪種思路?先根據(jù)你所選的思路解答此題,再對你選擇的思路進行簡要評價.

(評價參考建議:基于觀察到題目的什么特征設計的相應思路,如何操作才能實現(xiàn)這些思路、運算的簡潔性,以及你依此可以總結什么解題策略等等)

請先在以下相應方框內(nèi)打勾,再解答相應題目.

查看答案和解析>>

同步練習冊答案