【題目】定義:我們把對角線互相垂直的四邊形叫做和美四邊形,對角線交點稱為和美四邊形的中心.
(1)寫出一種你學過的和美四邊形_________;
(2)如圖1,點O是和美四邊形ABCD的中心,E,F,G、H分別是邊AB,BC,CD,DA的中點,連接OE,OF,OG,OH,記四邊形AEOH,BEOF,CGOF,DHOG的面積為,用等式表示的數量關系(無需說明理由).
(3)如圖2,四邊形ABCD是和美四邊形,若AB=3,BC=2,CD=4,求AD的長.
【答案】(1)正方形(答案不唯一,也可以是菱形.);(2)S1+S3= S2+S4;(3).
【解析】
(1)根據正方形的對角線互相垂直解答(答案不唯一);
(2)根據三角形的中線把三角形分為面積相等的兩部分解答;
(3)根據和美四邊形的定義、勾股定理計算即可.
解:(1)正方形是學過的和美四邊形,
故答案為:正方形;(答案不唯一,也可以是菱形.)
(2)的數量關系是S1+S3= S2+S4;理由如下:
如圖1,連接AC、BD,
由和美四邊形的定義可知,AC⊥BD,
則∠AOB=∠BOC=∠COD=∠DOA=90°,
又E、F、G、H分別是邊AB、BC、CD、DA的中點,
∴△AOE的面積=△BOE的面積,△BOF的面積=△COF的面積,△COG的面積=△DOG的面積,△DOH的面積=△AOH的面積,
∵S1+S3=△AOE的面積+△COF的面積+△COG的面積+△AOH的面積,
S2+S4=△BOE的面積+△BOF的面積+△DOG的面積+△DOH的面積,
∴S1+S3= S2+S4;
(3)如圖2,連接AC、BD交于點O,則AC⊥BD,
∵在Rt△AOB中,AO2=AB2-BO2,
Rt△DOC中,DO2=DC2-CO2,
AB=3,BC=2,CD=4,
∴AD2=AO2+DO2
=AB2-BO2+DC2-CO2
=AB2+DC2-BC2
=32+42-22
=21,
∴AD= .
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,D在AB的延長線上,且∠BCD=∠A.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為3,CD=4,求BD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】菱形ABCD中,∠B=60°,點E,F分別是BC,CD上的兩個動點,且始終保持∠AEF=60°.
(1)試判斷△AEF的形狀并說明理由;
(2)若菱形的邊長為2,求△ECF周長的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,BC=5米,AC=12米.M點在線段CA上,從C向A運動,速度為1米/秒;同時N點在線段AB上,從A向B運動,速度為2米/秒.運動時間為t秒.
(1)當t為何值時,∠AMN=∠ANM?
(2)當t為何值時,△AMN的面積最大?并求出這個最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知二次函數(a、b、c為常數,a≠0)的圖象過點O(0,0)和點A(4,0),函數圖象最低點M的縱坐標為,直線l的解析式為y=x.
(1)求二次函數的解析式;
(2)直線l沿x軸向右平移,得直線l′,l′與線段OA相交于點B,與x軸下方的拋物線相交于點C,過點C作CE⊥x軸于點E,把△BCE沿直線l′折疊,當點E恰好落在拋物線上點E′時(圖2),求直線l′的解析式;
(3)在(2)的條件下,l′與y軸交于點N,把△BON繞點O逆時針旋轉135°得到△B′ON′,P為l′上的動點,當△PB′N′為等腰三角形時,求符合條件的點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,二次函數的解析式為.
(1)它與軸的交點的坐標為________,頂點坐標為________;
(2)在給定的坐標系中畫出這個二次函數的圖象,并求出拋物線與坐標軸的交點所組成的三角形的面積;
(3)根據圖象直接寫出拋物線在范圍內,函數值的取值范圍是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為解決江北學校學生上學過河難的問題,鄉(xiāng)政府決定修建一座橋,建橋過程中需測量河的寬度(即兩平行
河岸AB與MN之間的距離).在測量時,選定河對岸MN上的點C處為橋的一端,在河岸點A處,測得∠CAB=30°,
沿河岸AB前行30米后到達B處,在B處測得∠CBA=60°,請你根據以上測量數據求出河的寬度.(參考數據: ≈1.41, ≈1.73,結果保留整數)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com