【題目】如圖所示,在每個(gè)邊長(zhǎng)都為1的小正方形組成的網(wǎng)格中,點(diǎn)、、均為格點(diǎn).
(1)線段的長(zhǎng)度等于______;
(2)若為線段上的動(dòng)點(diǎn),以、為鄰邊的四邊形為平行四邊形,當(dāng)長(zhǎng)度最小時(shí),請(qǐng)你借助網(wǎng)格和無刻度的直尺畫出該平行四邊形,并簡(jiǎn)要說明你的作圖方法:__________(不要求證明).
【答案】5 取格點(diǎn)、、,連結(jié)與垂直交于點(diǎn),延長(zhǎng)與AB的平行線交于點(diǎn)Q,四邊形即為所求
【解析】
(1)根據(jù)勾股定理即可求得AB的長(zhǎng);
(2)取AC的中點(diǎn)D,過點(diǎn)D作DE⊥AB于點(diǎn)P,過點(diǎn)C作直線CF∥AB,交PD的延長(zhǎng)線于點(diǎn)Q,連接AQ、CP,即可畫出平行四邊形PAQC.
(1)根據(jù)網(wǎng)格可知:
線段的長(zhǎng)度為,
所以線段AB的長(zhǎng)度等于5.
故答案為5;
(2)如圖所示:四邊形PAQC即為所求.
①取AC的中點(diǎn)D,取格點(diǎn)E,使DE⊥AB于點(diǎn)P,
②取格點(diǎn)F,使CF∥AB,交PD的延長(zhǎng)線于點(diǎn)Q,
③連接AQ、CP.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠C=90°,AB=10,點(diǎn)F是AB的中點(diǎn),點(diǎn)D、E分別在AC、BC邊上運(yùn)動(dòng),且始終保持DF⊥EF,則△CDE面積的最大值為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,直徑AB垂直弦CD于E,過點(diǎn)A作∠DAF=∠DAB,過點(diǎn)D作AF的垂線,垂足為F,交AB的延長(zhǎng)線于點(diǎn)P,連接CO并延長(zhǎng)交⊙O于點(diǎn)G,連接EG.
(1)求證:DF是⊙O的切線;
(2)若AD=DP,OB=3,求的長(zhǎng)度;
(3)若DE=4,AE=8,求線段EG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和爸爸周末步行去游泳館游泳,爸爸先出發(fā)了一段時(shí)間后小明才出發(fā),途中小明在離家米處的報(bào)亭休息了一段時(shí)間后繼續(xù)按原來的速度前往游泳館.爸爸、小明離家的距離(單位:米),單位:米)與小明所走時(shí)間(單位:分鐘)之間的函數(shù)關(guān)系如圖所示,請(qǐng)結(jié)合圖象信息解答下列問題:
分別求出爸爸離家的距離和小明到達(dá)報(bào)亭前離家的距離與時(shí)間之間的函數(shù)關(guān)系式;
求小明在報(bào)亭休息了多長(zhǎng)時(shí)間遇到姍姍來遲的爸爸?
若游泳館離小明家米,請(qǐng)你通過計(jì)算說明誰先到達(dá)游泳館?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=2x+4與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,過點(diǎn)B的直線交x軸于點(diǎn)C,且△ABC面積為10.
(1)求點(diǎn)C的坐標(biāo)及直線BC的解析式;
(2)如圖1,設(shè)點(diǎn)F為線段AB中點(diǎn),點(diǎn)G為y軸上一動(dòng)點(diǎn),連接FG,以FG為邊向FG右側(cè)作長(zhǎng)形FGQP,且FG:GQ=1:2,在G點(diǎn)的運(yùn)動(dòng)過程中,當(dāng)頂點(diǎn)Q落在直線BC上時(shí),求點(diǎn)G的坐標(biāo);
(3)如圖2,若M為線段BC上一點(diǎn),且滿足S△AMB=S△AOB,點(diǎn)E為直線AM上一動(dòng)點(diǎn),在x軸上是存在點(diǎn)D,使以點(diǎn)D,E,B,C為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)D的坐標(biāo);若不在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我們學(xué)習(xí)過的數(shù)學(xué)教科書中,有一個(gè)數(shù)學(xué)活動(dòng),其具體操作過程是:
第一步:對(duì)折矩形紙片,使與重合,得到折痕,把紙片展開(如圖①);
第二步:再一次折疊紙片,使點(diǎn)落在上,并使折痕經(jīng)過點(diǎn),得到折痕,同時(shí)得到線段(如圖②).
如圖②所示建立平面直角坐標(biāo)系,請(qǐng)解答以下問題:
(Ⅰ)設(shè)直線的解析式為,求的值;
(Ⅱ)若的延長(zhǎng)線與矩形的邊交于點(diǎn),設(shè)矩形的邊,;
(i)若,,求點(diǎn)的坐標(biāo);
(ii)請(qǐng)直接寫出、應(yīng)該滿足的條件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以△ABC的邊AC為直徑的半圓交AB邊于D點(diǎn),∠A、∠B、∠C所對(duì)邊長(zhǎng)為a、b、c,且二次函數(shù)y=(a+c)x2-bx+(c-a)頂點(diǎn)在x軸上,a是方程z2+z-20=0的根.
(1)證明:∠ACB=90°;
(2)若設(shè)b=2x,弓形面積S弓形AED=S1,陰影面積為S2,求(S2-S1)與x的函數(shù)關(guān)系式;
(3)在(2)的條件下,當(dāng)BD為何值時(shí),(S2-S1)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線分別與軸、軸交于點(diǎn),拋物線經(jīng)過點(diǎn),與軸的另一個(gè)交點(diǎn)為,拋物線的對(duì)稱軸交于點(diǎn).
(1)求拋物線的函數(shù)關(guān)系式及對(duì)稱軸;
(2)若為軸上一動(dòng)點(diǎn),為的中點(diǎn),過點(diǎn)作的中垂線,交拋物線于點(diǎn),其中在的左邊.
①如圖1,若時(shí),求的長(zhǎng).
②當(dāng)以點(diǎn)為頂點(diǎn)的三角形是直角三角形時(shí),請(qǐng)直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)經(jīng)公司以40元/千克的價(jià)格收購(gòu)一批農(nóng)產(chǎn)品進(jìn)行銷售,經(jīng)過市場(chǎng)調(diào)查,發(fā)現(xiàn)該產(chǎn)品日銷售量p(千克)與銷售價(jià)格x(元/千克)之間滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表:
銷售價(jià)格x(元/千克) | 40 | 50 | 60 | 70 | 80 |
日銷售量p (千克) | 120 | 100 | 80 | 60 | 40 |
(1)求p與x之間的函數(shù)表達(dá)式;
(2)農(nóng)經(jīng)公司應(yīng)該如何確定這批農(nóng)產(chǎn)品的銷售價(jià)格,才能使日銷售利潤(rùn)最大?
(3)若農(nóng)經(jīng)公司每銷售1千克這種農(nóng)產(chǎn)品需支出m元(m>0)的相關(guān)費(fèi)用,當(dāng)時(shí),農(nóng)經(jīng)公司的日獲利的最大值為1682元,求m的值.(日獲利日銷售利潤(rùn)日支出費(fèi)用)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com