【題目】如圖1,在中,,,,以為直徑的半圓按如圖所示位置擺放,點與點重合,點在邊的中點處,點從現(xiàn)在的位置出發(fā)沿方向以每秒2個單位長度的速度運動,點隨之沿下滑,并帶動半圓在平面內(nèi)滑動,設(shè)運動時間為秒(),點運動到點處停止,點為半圓中點.

1)如圖2,當(dāng)點與點重合時,連接交邊,則____________;

2)如圖3,當(dāng)半圓的圓心落在了的斜邊的中線時,求此時的,并求出此時的面積;

3)在整個運動的過程中,當(dāng)半圓與邊有兩個公共點時,求出的取值范圍;

4)請直接寫出在整個運動過程中點的運動路徑長.

【答案】10.5;(2;;(3)當(dāng)時圓與邊有兩個交點;(4

【解析】

1)首先根據(jù)中點求出AN的長度,進(jìn)而求出圓的半徑,然后利用得到,可得出OE的長度,最后利用即可求解;

2)首先利用等腰三角形的性質(zhì)和直角三角形斜邊中線的性質(zhì)推出,進(jìn)而有,則,從而求出t的值和CM,CN的長度,最后利用三角形面積公式求解即可;

3)分兩種情況:當(dāng)MNAC邊上與圓相切時和當(dāng)MNBC邊上與圓相切時,分別求出這兩種臨界狀況,然后數(shù)形結(jié)合即可得出答案;

4)分析出P點的運動軌跡,然后分三段分別進(jìn)行討論即可.

解:(1)∵NAC中點,

,

∵點為半圓中點,

,

,

,

解得

;

2

如圖,當(dāng)圓心落在斜邊中線時:

,

∴點在圓上,

,

設(shè)中點,則,

,

又∵

,

,

,

解得,,

,

;

3)如圖,

當(dāng)圓邊相切于點,連接

,

,

,

,

解得,

;

如圖,

當(dāng)圓邊相切于點,連接,

,

,

,

,

解得,

,

綜上,當(dāng)時圓與邊有兩個交點;

4)當(dāng)N點開始運動到N點與點C重合時,P點運動的路程為;

當(dāng)點N與點C重合時,如圖,

,

,

當(dāng)圓運動到如圖所示時,此時,

,OMN中點,

,

∴當(dāng)N點從C運動到如圖所示時,P點始終在的角平分線上運動,

∴當(dāng)N點從C運動到如圖所示時,P點的運動路徑為,

∴當(dāng)N點從C運動到M點與C點重合時,這段時間內(nèi)P運動的路徑長為

M點與C點重合到N點與B重合,P運動的路程為 ,

∴整個過程中P點的運動路徑長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一張直角三角形卡片,∠ACB90°,ACBC,點D、E分別在邊ABAC上,AD2 cm,DB4 cm,DEAB.若將該卡片繞直線DE旋轉(zhuǎn)一周,則形成的幾何體的表面積為___cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)課上,老師提出如下問題:

已知:∠α,直線ll上兩點AB

求作:RtABC,使點C在直線l的上方,且∠ABC=90°,∠BAC=α

小剛的做法如下:

①以∠α的頂點O為圓心,任意長為半徑作弧,交兩邊于M,N;以A為圓心,同樣長為半徑作弧,交直線l于點P;

②以P為圓心,MN的長為半徑作弧,兩弧交于點Q,作射線AQ;

③以B為圓心,任意長為半徑作弧,交直線lE,F;

④分別以EF為圓心,大于長為半徑作弧,兩弧在直線l上方交于點G,作射線BG;

⑤射線AQ與射線BG交于點CRtABC即為所求.

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)完成下面的證明:

連接PQ

在△OMN和△AQP中,

ON=AP,PQ=NM,OM=AQ

∴△OMN ≌△AQP__________)(填寫推理依據(jù))

∴∠PAQ=O=α

CE=CFBE=BF

CBEF____________________________)(填寫推理依據(jù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E,F分別在ADBC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,有以下四個結(jié)論:HE=HF;EC平分DCH;線段BF的取值范圍為3≤BF≤4;當(dāng)點H與點A重合時,EF=2.以上結(jié)論中,你認(rèn)為正確的有(  )個.

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直徑,作的內(nèi)接正六邊形,甲、乙兩人的作法分別如下:

甲:1.作的中垂線,交圓兩點;2.作的中垂線,交圓兩點;3.順次連接六個點,六邊形即為所求;

乙:1.以為圓心,長為半徑作弧,交圓兩點;2.以為圓心,長為半徑作弧,交圓兩點;3.順次連接六個點,六邊形即為所求;

對于甲、乙兩人的作法,可判斷(

A.甲對,乙不對B.甲不對,乙對

C.兩人都不對D.兩人都對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)疫情期間為了切實抓好停課不停學(xué)活動,借助某軟件平臺隨機(jī)抽取了該校部分學(xué)生的在線學(xué)習(xí)時間,并將結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)以上信息回答下列問題

1)本次調(diào)查的人數(shù)為   學(xué)習(xí)時間為7小時的所對的圓心角為 ;

2)補(bǔ)全頻數(shù)分布直方圖;

3)若全校共有學(xué)生1800人,估計有多少學(xué)生在線學(xué)習(xí)時間不低于8個小時.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖放置的兩個正方形,大正方形邊長為,小正方形邊長為(),邊上,且,連接,,于點,將繞點旋轉(zhuǎn)至,將繞點旋轉(zhuǎn)至,給出以下五個結(jié)論:①;②;③;④;⑤四點共圓,其中正確的序號為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與雙曲線的圖象相交于點A和點C,點A的坐標(biāo)為,點C的坐標(biāo)為

1)求的值和反比例函數(shù)的解析式;

2)求的值,并寫出在軸右側(cè),使得反比例函數(shù)大于一次函數(shù)的值的的取值范圍;

3)如圖,直線軸相交于點B,在軸上存在點D,使得是以BC為腰的等腰三角形,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張老師為了了解班級學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,對本班部分學(xué)生進(jìn)行了為期半個月的跟蹤調(diào)查.他將調(diào)查結(jié)果分為四類:A:很好;B:較好;C:一般;D:較差,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:

(1)請計算出A類男生和C類女生的人數(shù),并將條形統(tǒng)計圖補(bǔ)充完整.

(2)為了共同進(jìn)步,張老師想從被調(diào)查的A類和D類學(xué)生中各隨機(jī)機(jī)抽取一位同學(xué)進(jìn)行一幫一互助學(xué)習(xí),請用畫樹狀圖或列表的方法求出所選兩位同學(xué)恰好是一男一女同學(xué)的概率.

查看答案和解析>>

同步練習(xí)冊答案