【題目】某中學(xué)疫情期間為了切實(shí)抓好“停課不停學(xué)”活動(dòng),借助某軟件平臺(tái)隨機(jī)抽取了該校部分學(xué)生的在線學(xué)習(xí)時(shí)間,并將結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
請你根據(jù)以上信息回答下列問題
(1)本次調(diào)查的人數(shù)為 , 學(xué)習(xí)時(shí)間為7小時(shí)的所對(duì)的圓心角為 ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若全校共有學(xué)生1800人,估計(jì)有多少學(xué)生在線學(xué)習(xí)時(shí)間不低于8個(gè)小時(shí).
【答案】(1)50,86.4°;(2)詳見解析;(3)1260
【解析】
(1)根據(jù)在線學(xué)習(xí)時(shí)間8h和所占的百分比求出調(diào)查的總?cè)藬?shù);計(jì)算出學(xué)習(xí)時(shí)間為9小時(shí)的人數(shù)從而得到學(xué)習(xí)時(shí)間為7小時(shí)的人數(shù),再用360°乘以在線學(xué)習(xí)時(shí)間7h所占的百分比即可;
(2)依據(jù)(1)中相關(guān)數(shù)據(jù),從而補(bǔ)全統(tǒng)計(jì)圖;
(3)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以估計(jì)有多少學(xué)生在線學(xué)習(xí)時(shí)間不低于8個(gè)小時(shí).
解:(1)本次調(diào)查的人數(shù)為:20÷40%=50(人),
學(xué)習(xí)時(shí)間為9小時(shí)的人數(shù)為:50×30%=15(人),
學(xué)習(xí)時(shí)間為7小時(shí)的人數(shù)為:50-15-20-3=12(人),
所對(duì)的圓心角為:360°×=86.4°;
故答案為:50,86.4°;
(2)依據(jù)(1)中相關(guān)數(shù)據(jù),補(bǔ)全頻數(shù)分布直方圖如下:
(3)1800×(30%+40%)=1260(人).
答:估計(jì)全校有1260在線學(xué)習(xí)時(shí)間不低于8個(gè)小時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B繞點(diǎn)B順時(shí)針旋轉(zhuǎn)180°,得到△BP2C,把△BP2C繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,得到△CP3D,依此類推,得到的等腰直角三角形的直角頂點(diǎn)P2020的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,四邊形ABCD的位置如圖所示,解答下列問題:
(1)將四邊形ABCD先向左平移4個(gè)單位,再向下平移6個(gè)單位,得到四邊形A1B1C1D1,畫出平移后的四邊形A1B1C1D1;
(2)將四邊形A1B1C1D1繞點(diǎn)A1逆時(shí)針旋轉(zhuǎn)90°,得到四邊形A1B2C2D2,畫出旋轉(zhuǎn)后的四邊形A1B2C2D2,并寫出點(diǎn)C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對(duì)折矩形紙片,使與重合,得到折痕,然后把再對(duì)折到,使點(diǎn)落在上的點(diǎn)處,若,則的長度為( )
A.1B.C.D.2.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,,,斜邊,將繞點(diǎn)順時(shí)針旋轉(zhuǎn),得到,連接.點(diǎn)從點(diǎn)出發(fā),沿方向勻速行動(dòng),速度為;同時(shí),點(diǎn)從點(diǎn)出發(fā),沿方向勻速運(yùn)動(dòng),速度為;當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng),另一個(gè)點(diǎn)也停讓運(yùn)動(dòng).連接,,交于點(diǎn).設(shè)運(yùn)動(dòng)時(shí)間為,解答下列問題:
(1)當(dāng)為何值時(shí),平分?
(2)設(shè)四邊形的面積為,求與的函教關(guān)系式;
(3)在運(yùn)動(dòng)過程中,當(dāng)時(shí),求四邊形的面積;
(4)在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻,使點(diǎn)為線段的中點(diǎn)?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,直線交坐標(biāo)軸于A、C兩點(diǎn),拋物線過A、C兩點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)P為拋物線位于第三象限上一動(dòng)點(diǎn),連接PA,PC,試問△PAC是否存在最大值,若存在,請求出△APC取最大值以及點(diǎn)P的坐標(biāo),若不存在,請說明理由;
(3)點(diǎn)M為拋物線上一點(diǎn),點(diǎn)N為拋物線對(duì)稱軸上一點(diǎn),若△NMC是以∠NMC為直角的等腰直角三角形,請直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,CD是AB邊上的中線,點(diǎn)E為線段CD上一點(diǎn)(不與點(diǎn)C、D重合),連接BE,作EF⊥BE與AC的延長線交于點(diǎn)F,與BC交于點(diǎn)G,連接BF.
(1)求證:△CFG∽△EBG;
(2)求∠EFB的度數(shù);
(3)求的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,海中兩個(gè)燈塔A,B,其中B位于A的正東方向上,漁船跟蹤魚群由西向東航行,在點(diǎn)C處測得燈塔A在西北方向上,燈塔B在北偏東30°方向上,漁船不改變航向繼續(xù)向東航行30海里到達(dá)點(diǎn)D,這時(shí)測得燈塔A在北偏西60°方向上,求燈塔A,B間的距離.(計(jì)算結(jié)果用根號(hào)表示,不取近似值)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C、D為圓上的兩點(diǎn),OC∥BD,弦AD、BC相交于點(diǎn)E.
(1)求證:;
(2)若CE=1,BE=3,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com