【題目】如圖,射線ON,OE、OS、OW分別表示從點(diǎn)O出發(fā)的北、東、南、西四個(gè)方向,且點(diǎn)A在點(diǎn)O的北偏東45°方向上,點(diǎn)B在點(diǎn)O的北偏西30°方向上.
(1)畫出射線OB,若∠BOC與∠AOB互余,請(qǐng)?jiān)趫D中畫出∠BOC;
(2)若OP是∠AOC的角平分線,請(qǐng)直接寫出AOP的度數(shù).(不需要寫計(jì)算過程)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,將直尺擺放在三角板上,使直尺與三角板的邊分別交于點(diǎn)D,E,F(xiàn),G,已知∠CGD=42°
(1)求∠CEF的度數(shù);
(2)將直尺向下平移,使直尺的邊緣通過三角板的頂點(diǎn)B,交AC邊于點(diǎn)H,如圖②所示,點(diǎn)H,B在直尺上的讀數(shù)分別為4,13.4,求BC的長(zhǎng)(結(jié)果保留兩位小數(shù)).
(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖是用4個(gè)全等的長(zhǎng)方形拼成的一個(gè)“回形”正方形,圖中陰影部分面積用2種方法表示可得一個(gè)等式,這個(gè)等式為_______.
(2)若(4x﹣y)2=9,(4x+y)2=169,求xy的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AB=2,AD和BE是圓O的兩條切線,A、B為切點(diǎn),過圓上一點(diǎn)C作⊙O的切線CF,分別交AD、BE于點(diǎn)M、N,連接AC、CB,若∠ABC=30°,則AM= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長(zhǎng)線上的一點(diǎn),點(diǎn)E在BC邊上,連接AE,DE,DC,AE=CD.
(1)求證:△ABE≌△CBD;
(2)若∠BAE=15°,求∠EDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“一帶一路”讓中國(guó)和世界更緊密,“中歐鐵路”為了安全起見在某段鐵路兩旁安置了兩座可旋轉(zhuǎn)探照燈.如圖1所示,燈A射線從AM開始順時(shí)針旋轉(zhuǎn)至AN便立即回轉(zhuǎn),燈B射線從BP開始順時(shí)針旋轉(zhuǎn)至BQ便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈A轉(zhuǎn)動(dòng)的速度是每秒2度,燈B轉(zhuǎn)動(dòng)的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.
(1)填空:∠BAN=_____°;
(2)若燈B射線先轉(zhuǎn)動(dòng)30秒,燈A射線才開始轉(zhuǎn)動(dòng),在燈B射線到達(dá)BQ之前,A燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?
(3)如圖2,若兩燈同時(shí)轉(zhuǎn)動(dòng),在燈A射線到達(dá)AN之前.若射出的光束交于點(diǎn)C,過C作∠ACD交PQ于點(diǎn)D,且∠ACD=120°,則在轉(zhuǎn)動(dòng)過程中,請(qǐng)?zhí)骄?/span>∠BAC與∠BCD的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出其數(shù)量關(guān)系;若改變,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD,EF相交于點(diǎn)O.
(1)寫出∠COE的鄰補(bǔ)角;
(2)分別寫出∠COE和∠BOE的對(duì)頂角;
(3)如果∠BOD=60°,∠BOF=90°,求∠AOF和∠FOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成推理填空:如圖在△ABC中,已知∠1+∠2=180°,∠3=∠B,試說明∠AED=∠C.
解:∵∠1+∠2=180°(已知),
∠1+∠EFD=180°(鄰補(bǔ)角定義),
∴∠2=∠EFD( )
∴AB∥EF(內(nèi)錯(cuò)角相等,兩直線平行)
∴∠ADE=∠3( )
∵∠3=∠B(已知)
∴∠ADE=∠B( )
∴ (同位角相等,兩直線平行)
∴∠AED=∠C(兩直線平行,同位角相等).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com