【題目】如圖,已知△ABC是等邊三角形,D、E、F分別是射線BA、CB、AC上一點,且AD=BE=CF,連接DE、EF、DF.
(1)求證:∠BDE=∠CEF;
(2)試判斷△DEF的形狀,并簡要說明理由.

【答案】證明:(1)∵△ABC為等邊三角形,且AD=BE=CF
又∵∠BAC=∠ABC=∠ACB=60°,
∴∠EBD=∠FCE,DB=CE,
在△BED與△CFE中,
,
∴△BED≌△CFE(SAS),
∴∠BDE=∠CEF;
(2)同理可得:△ADF≌△BED≌△CFE(SAS),
∴DF=ED=EF,
∴△DEF是一個等邊三角形.
【解析】(1)根據(jù)等邊△ABC的性質(zhì)得出∠EBD=∠FCE,DB=CE,證得△BED≌△CFE,進而得證;
(2)根據(jù)等邊△ABC的性質(zhì),證得△ADF≌△BED≌△CFE即可得出:△DEF是等邊三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】命題“正數(shù)的絕對值是它本身”的逆命題是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請你把32、(﹣2)3、|﹣ |、﹣ 、0、﹣(﹣3)、﹣1.5這七個數(shù)按照從小到大,從左到右的順序串成一個糖葫蘆.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知三條線的比如下,可以組成三角形的是( )

A. 5:20:30B. 10:20:30

C. 15:15:30D. 20:30:30

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知三角形的兩邊長分別為37,第三邊長是方程x(x-7)-10(x-7)=0的一個根,求這個三角形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義新運算:對于任意有理數(shù)a,b,都有a※b=a(a﹣b)+1,等式右邊是通常的加法,減法及乘法運算,比如:2※5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.

(1)求(﹣2)※3的值;

(2)若3※x=5※(x﹣1),求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知拋物線軸交于A、B兩點(點A在點B左側),與交于點C,拋物線對稱軸與軸交于點D, 軸上一點。

(1)寫出點A、B、C的坐標(用表示);

(2)若以DE為直徑的圓經(jīng)過點C且與拋物線交于另一點F

①求拋物線解析式;

P為線段DE上一動(不與D、E重合),過P,判斷是否為定值,若是,請求出定值,若不是,請說明理由;

(3)如圖②,將線段繞點順時針旋轉(zhuǎn)30°,與相交于點,連接.點是線段的中點,連接.若點是線段上一個動點,連接,將繞點逆時針旋轉(zhuǎn)得到,延長于點。若的面積等于的面積的,求線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算
(1)(+3.5)﹣1.4﹣(2.5)+(﹣4.6)
(2)[2﹣5×(﹣ 2]÷(﹣
(3)[2 ﹣( + )×24]÷5×(﹣1)2009
(4)﹣22+|5﹣8|+24÷(﹣3)×
(5)(xy2﹣x2y)﹣2( xy+xy2)+3x2y
(6)5a2﹣[a2+(5a2﹣2a)﹣2(a2﹣3a)].

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】化簡求值:(3a2b﹣2ab2)﹣(ab2﹣2a2b+7),其中a=﹣1,b=2.

查看答案和解析>>

同步練習冊答案