【題目】四川省蘆山縣4月20日發(fā)生了7.0級(jí)強(qiáng)烈地震,政府為了盡快搭建板房安置災(zāi)民,給某廠(chǎng)下達(dá)了生產(chǎn)A種板材48000m2和B種板材24000m2的任務(wù).
⑴如果該廠(chǎng)安排280人生產(chǎn)這兩種板材,每人每天能生產(chǎn)A種板材60 m2或B種板材40 m2,請(qǐng)問(wèn):應(yīng)分別安排多少人生產(chǎn)A種板材和B種板材,才能確保同時(shí)完成各自的生產(chǎn)任務(wù)?
⑵某災(zāi)民安置點(diǎn)計(jì)劃用該廠(chǎng)生產(chǎn)的兩種板材搭建甲、乙兩種規(guī)格的板房共400間,已知建設(shè)一間甲型板房和一間乙型板房所需板材及安置人數(shù)如下表所示:
板房 | A種板材(m2) | B種板材(m2) | 安置人數(shù) |
甲型 | 110 | 61 | 12 |
乙型 | 160 | 53 | 10 |
①共有多少種建房方案可供選擇?
②若這個(gè)災(zāi)民安置點(diǎn)有4700名災(zāi)民需要安置,這400間板房能否滿(mǎn)足需要?若不能滿(mǎn)足請(qǐng)說(shuō)明理由;若能滿(mǎn)足,請(qǐng)說(shuō)明應(yīng)選擇什么方案.
【答案】(1)安排160人生產(chǎn)A種板材,安排120人生產(chǎn)B種板材;(2)①共有31種建房方案可供選擇;②建甲型350間,建乙型50間能滿(mǎn)足需要
【解析】
(1)(1)設(shè)安排x人生產(chǎn)A種板材,則安排(280-x)人生產(chǎn)B種板材,根據(jù)題意可列分式方程,即可進(jìn)行求解;(2)①設(shè)建甲型m間,則建乙型(400-m)間,根據(jù)題意列出不等式組,即可求出m的取值,即可得到方案的個(gè)數(shù);②由題意,得12m+10(400-m)≥4700
解得m≥350 ,再根據(jù)①所求,即可判斷.
解:(1)設(shè)安排x人生產(chǎn)A種板材,則安排(280-x)人生產(chǎn)B種板材
根據(jù)題意,得
解得x=160
經(jīng)檢驗(yàn)x=160是原方程的根,240-x=120
∴安排160人生產(chǎn)A種板材,安排120人生產(chǎn)B種板材
(2)設(shè)建甲型m間,則建乙型(400-m)間
①根據(jù)題意,得
解得320≤m≤350
∵m是整數(shù)
∴符合條件的m值有31個(gè)
∴共有31種建房方案可供選擇
②這400間板房能滿(mǎn)足需要
由題意,得12m+10(400-m)≥4700
解得m≥350
∵320≤m≤350
∴m=350
∴建甲型350間,建乙型50間能滿(mǎn)足需要
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=m,BC=8,E為線(xiàn)段BC上的動(dòng)點(diǎn)(不與B,C重合),連接DE,作EF⊥DE,EF與射線(xiàn)BA交于點(diǎn)F,設(shè)CE=x,BF=y,若,當(dāng)DEF為等腰三角形時(shí),m的值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在菱形ABCD中,對(duì)角線(xiàn)AC與BD相交于點(diǎn)O,AB=13,BD=24,在菱形ABCD的外部以AB為邊作等邊三角形 ABE.點(diǎn)F是對(duì)角線(xiàn)BD上一動(dòng)點(diǎn)(點(diǎn)F不與點(diǎn)B重合),將線(xiàn)段AF繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)60°得到線(xiàn)段AM,連接FM.
(1)求AO的長(zhǎng);
(2)如圖2,當(dāng)點(diǎn)F在線(xiàn)段BO上,且點(diǎn)M,F(xiàn),C三點(diǎn)在同一條直線(xiàn)上時(shí),求證:AC=AM;
(3)連接EM,若△AEM的面積為40,請(qǐng)直接寫(xiě)出△AFM的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)G在正方形ABCD的對(duì)角線(xiàn)AC上,,垂足為點(diǎn)E,,垂足為點(diǎn)F.
發(fā)現(xiàn)問(wèn)題:在圖中,的值為______.
探究問(wèn)題:將正方形CEGF繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)角,如圖所示,探究線(xiàn)段AG與BE之間的數(shù)量關(guān)系,并證明你的結(jié)論.
解決問(wèn)題:正方形CEGF在旋轉(zhuǎn)過(guò)程中,當(dāng)B,E,F三點(diǎn)在一條直線(xiàn)上時(shí),如圖所示,延長(zhǎng)CG交AD于點(diǎn)H;若,,直接寫(xiě)出BC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線(xiàn);
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見(jiàn)解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線(xiàn)與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線(xiàn);
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線(xiàn);
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線(xiàn)y=ax2+ax+b(a≠0)與直線(xiàn)y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線(xiàn)的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線(xiàn)與拋物線(xiàn)的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線(xiàn)y=﹣2x與拋物線(xiàn)在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱(chēng),現(xiàn)將線(xiàn)段GH沿y軸向上平移t個(gè)單位(t>0),若線(xiàn)段GH與拋物線(xiàn)有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,∠B的角平分線(xiàn)BE與AD交于點(diǎn)E,∠BED的角平分線(xiàn)EF與DC交于點(diǎn)F,若AB=9,DF=2FC,則BC=____.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線(xiàn)L:y=ax2+bx﹣1.5(a>0)與x軸交于點(diǎn)A(-1,0)和點(diǎn)B,頂點(diǎn)為M,對(duì)稱(chēng)軸為直線(xiàn)l:x=1.
(1)直接寫(xiě)出點(diǎn)B的坐標(biāo)及一元二次方程ax2+bx﹣1.5=0的解.
(2)求拋物線(xiàn)L的解析式及頂點(diǎn)M的坐標(biāo).
(3)如圖2,設(shè)點(diǎn)P是拋物線(xiàn)L上的一個(gè)動(dòng)點(diǎn),將拋物線(xiàn)L平移.使它的頂點(diǎn)移至點(diǎn)P,得到新拋物線(xiàn)L′,L′與直線(xiàn)l相交于點(diǎn)N.設(shè)點(diǎn)P的橫坐標(biāo)為m
①當(dāng)m=5時(shí),PM與PN有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.
②當(dāng)m為大于1的任意實(shí)數(shù)時(shí),①中的關(guān)系式還成立嗎?為什么?
③是否存在這樣的點(diǎn)P,使△PMN為等邊三角形?若存在.請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E是CD的中點(diǎn),點(diǎn)F是BC上的一點(diǎn),且BF=3CF,連接AE、AF、EF,下列結(jié)論:①△ADE∽△ECF,②∠DAE=∠EAF,③AE2=ADAF,④S△AEF=5S△ECF,其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)不經(jīng)過(guò)第四象限,且與軸,軸分別交于兩點(diǎn),點(diǎn)為的中點(diǎn),點(diǎn)在線(xiàn)段上,其坐標(biāo)為,連結(jié),,若,那么的值為( )
A. B. 4C. 5D. 6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com