【題目】二次函數(shù)(是常數(shù),)的自變量與函數(shù)值的部分對應值如下表:
… | 0 | 1 | 2 | … | |||
… | … |
且當時,與其對應的函數(shù)值.有下列結(jié)論:①;②和3是關(guān)于的方程的兩個根;③.其中,正確結(jié)論的個數(shù)是( )
A. 0B. 1C. 2D. 3
【答案】C
【解析】
首先確定對稱軸,然后根據(jù)二次函數(shù)的圖像和性質(zhì)逐一進行分析即可求解.
∵由表格可知當x=0和x=1時的函數(shù)值相等都為-2
∴拋物線的對稱軸是:x=-=;
∴a、b異號,且b=-a;
∵當x=0時y=c=-2
∴c
∴abc0,故①正確;
∵根據(jù)拋物線的對稱性可得當x=-2和x=3時的函數(shù)值相等都為t
∴和3是關(guān)于的方程的兩個根;故②正確;
∵b=-a,c=-2
∴二次函數(shù)解析式:
∵當時,與其對應的函數(shù)值.
∴,∴a;
∵當x=-1和x=2時的函數(shù)值分別為m和n,
∴m=n=2a-2,
∴m+n=4a-4;故③錯誤
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】為了疫情防控需要,某防護用品廠計劃生產(chǎn)150000個口罩,但是在實際生產(chǎn)時,……,求實際每天生產(chǎn)口罩的個數(shù),在這個題目中,若設實際每天生產(chǎn)口罩x個,可得方程=10,則題目中用“……”表示的條件應是( 。
A.每天比原計劃多生產(chǎn)500個,結(jié)果延期10天完成
B.每天比原計劃少生產(chǎn)500個,結(jié)果提前10天完成
C.每天比原計劃少生產(chǎn)500個,結(jié)果延期10天完成
D.每天比原計劃多生產(chǎn)500個,結(jié)果提前10天完成
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線l為y=x,過點A1(1,0)作A1B1⊥x軸,與直線l交于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸于點A2,再作A2B2⊥x軸,交直線l于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸于點A3…按照這樣的作法進行下去,則點A20的坐標是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù) (為常數(shù)),當自變量的值滿足時,與其對應的函數(shù)值的最大值為-1,則的值為( )
A. 3或6 B. 1或6 C. 1或3 D. 4或6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C.
(1)求證:AE與⊙O相切于點A;
(2)若AE∥BC,BC=2,AC=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店銷售一種商品,童威經(jīng)市場調(diào)查發(fā)現(xiàn):該商品的周銷售量(件)是售價(元/件)的一次函數(shù),其售價、周銷售量、周銷售利潤(元)的三組對應值如下表:
售價(元/件) | 50 | 60 | 80 |
周銷售量(件) | 100 | 80 | 40 |
周銷售利潤(元) | 1000 | 1600 | 1600 |
注:周銷售利潤=周銷售量×(售價-進價)
(1)①求關(guān)于的函數(shù)解析式(不要求寫出自變量的取值范圍)
②該商品進價是_________元/件;當售價是________元/件時,周銷售利潤最大,最大利潤是__________元
(2)由于某種原因,該商品進價提高了元/件,物價部門規(guī)定該商品售價不得超過65元/件,該商店在今后的銷售中,周銷售量與售價仍然滿足(1)中的函數(shù)關(guān)系.若周銷售最大利潤是1400元,求的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+c(a≠0)與y軸交于點A,與x軸交于B、C兩點(點C在x軸正半軸上),△ABC為等腰直角三角形,且面積為4.現(xiàn)將拋物線沿BA方向平移,平移后的拋物線經(jīng)過點C時,與x軸的另一交點為E,其頂點為F,對稱軸與x軸的交點為H.
(1)求a、c的值;
(2)連接OF,求△OEF的周長;
(3)現(xiàn)將一足夠大的三角板的直角頂點Q放在射線HF上,一直角邊始終過點E,另一直角邊與y軸相交于點P,是否存在這樣的點Q,使得以點P、Q、E為頂點的三角形與△POE全等?若存在,請直接寫出Q點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,漏壺是一種古代計時器.在它內(nèi)部盛一定量的水,水從壺下的小孔漏出.壺內(nèi)壁有刻度,人們根據(jù)壺中水面的位置計算時間.用x(小時)表示漏水時間,y(厘米)表示壺底到水面的高度,某次計時過程中,記錄到部分數(shù)據(jù)如下表:
漏水時間x(小時) | … | 3 | 4 | 5 | 6 | … |
壺底到水面高度y(厘米) | … | 9 | 7 | 5 | 3 | … |
(1)問y與x的函數(shù)關(guān)系屬于一次函數(shù)、二次函數(shù)和反比例函數(shù)中的哪一種?求出該函數(shù)解析式及自變量x的取值范圍;
(2)求剛開始計時時壺底到水面的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長AB=8,E為平面內(nèi)一動點,且AE=4,F為CD上一點,CF=2,連接EF,ED,則EFED的最小值為( )
A.6B.4C.4D.6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com